Возможный механизм бактерицидного действия видимого света. Бактерицидное действие – это что такое? Препараты бактерицидного действия Группа антибактериальных препаратов с бактерицидным механизмом действия

Бактерицидное действие – это что такое? Препараты бактерицидного действия

Возможный механизм бактерицидного действия видимого света. Бактерицидное действие - это что такое? Препараты бактерицидного действия Группа антибактериальных препаратов с бактерицидным механизмом действия

Множество микроорганизмов окружают человека. Есть полезные, которые живут на коже, слизистых и в кишечнике. Они помогают пераваривать пищу, участвуют в синтезе витаминов и защищают организм от патогенных микроорганизмов. А их тоже немало. Многие заболевания вызываются деятельностью бактерий в организме человека.

И единственным способом справиться с ними являются антибиотики. Большинство их них оказывает бактерицидное действие. Это свойство таких препаратов помогает предотвратить активное размножение бактерий и приводит к их гибели. Различные средства с таким эффектом широко используются для внутреннего и наружного применения.

Что такое бактерицидное действие

Это свойство препаратов применяется для уничтожения различных микроорганизмов. Обладают таким качеством различные физические и химические агенты. Бактерицидное действие – это способность их разрушать клеточную стенку бактерий и этим вызывать их гибель.

Скорость этого процесса зависит от концентрации действующего вещества и численности микроорганизмов. Только при применении антибиотиков группы пенициллинов бактерицидное действие не усиливается при увеличении количества препарата.

Бактерицидным действием обладают:

  • ультрафиолетовые лучи, радиоактивные излучения;
  • антисептические и дезинфицирующие химические вещества, например, хлор, йод, кислоты, спирты, фенолы и другие;
  • химиотерапевтические препараты антибактериального действия для приема внутрь.

Где требуются такие средства

Бактерицидное действие – это то свойство некоторых веществ, которое постоянно требуется человеку в хозяйственной и бытовой деятельности.

Чаще всего такие препараты применяются для дезинфекции помещений в детских и медицинских учреждениях, местах общего пользования и заведениях общественного питания. Используют их для обработки рук, посуды, инвентаря.

Особенно нужны бактерициндные препараты в медицинских учреждениях, где они применяются постоянно. Многие хозяйки используют такие вещества и в быту для обработки рук, сантехники и пола.

Медицина – это тоже та область, где препараты бактерицидного действия используют очень часто. Наружные антисептики кроме обработки рук применяются для очищения ран и борьбы с инфекциями кожи и слизистых.

Химиотерапевтические препараты – это пока единственное средство лечения различных инфекционных заболеваний, вызываемых бактериями.

Особенность таких препаратов в том, что они разрушают клеточные стенки бактерий, не затрагивая клетки человека.

Антибиотики бактерицидного действия

Такие препараты для борьбы с инфекцией используются чаще всего. Антибиотики делятся на две группы: бактерицидные и бактериостатические, то есть те, которые не убивают бактерии, а просто не дают им размножаться.

Первая группа используется чаще, так как действие таких препаратов наступает быстрее. Их применяют при острых инфекционных процессах, когда происходит интенсивное деление клеток бактерий.

У таких антибиотиков бактерицидное действие выражается в нарушении синтеза белка и предотвращении построения клеточной стенки. В результате этого бактерии гибнут. К таким антибиотикам относятся:

  • пенициллины – “Амоксициллин”, “Ампициллин”, “Бензилпенициллин”;
  • цефалоспорины, например, “Цефиксим”, “Цефтриаксон”;
  • аминогликозиды – “Гентамицин”, “Амикацин”, “Стрептомицин”;
  • фторхинолоны – “Норфлоксацин”, “Левофлоксацин”;
  • “Рифампицин”, “Грамицидин”, “Сульфаметоксазол”, “Метронидазол”.

Растения с бактерицидным действием

Способностью уничтожать бактерии обладают и некоторые растения. Они менее эффективны, чем антибиотики, действуют намного медленнее, но в качестве вспомогательного лечения применяются часто. Бактерицидное действие оказывают такие растения:

  • алоэ;
  • бузина черная;
  • кровохлебка лекарственная;
  • чистотел;
  • подорожник;
  • морская капуста.

Такие препараты, обладающие бактерицидным действием, используются для обработки рук, инвентаря, медицинских инструментов, пола и сантехники. Некоторые их них безопасны для кожи и даже используются для лечения инфицированных ран. Их можно разделить на несколько групп:

  • препараты хлора: хлорная известь, “Хлорамин”, “Жавель”, “Хлорсепт” и другие;
  • кислородосодержащие средства: перекись водорода, “Гидроперит”;
  • препараты йода: спиртовой раствор, “Люголь”, “Йодоформ”;
  • кислоты и щелочи: салициловая кислота, борная кислота, натрий двууглекислый, нашатырный спирт;
  • препараты, содержащие металлы – серебро, медь, алюминий, свинец и другие: квасцы, свинцовая вода, цинковая мазь, “Ксероформ”, “Ляпис”, “Проторгол”;
  • а также фенол, формалин, деготь, “Фурацилин” и другие.

Правила применения таких препаратов

Все бактерицидные средства являются сильнодействующими и могут вызывать серьезные побочные эффекты. При использовании наружных антисептиков обязательно соблюдать инструкцию и не допускать передозировки. Некоторые дезинфицирующие средства очень ядовиты, например, хлор или фенол, поэтому при работе с ними нужно защищать руки и органы дыхания и четко соблюдать дозировку.

Химиотерапевтические препараты для приема внутрь также могут быть опасными. Ведь вместе с патогенными бактериями они уничтожают и полезные микроорганизмы.

Из-за этого у пациента нарушается работа желудочно-кишечного тракта, наблюдается недостаток витаминов и минералов, снижается иммунитет и появляются аллергические реакции.

Поэтому при применении бактерицидных препаратов нужно соблюдать некоторые правила:

  • принимать их необходимо только по назначению врача;
  • очень важна дозировка и режим приема: действуют они только при наличии в организме определенной концентрации действующего вещества;
  • нельзя прерывать лечение раньше срока, даже если состояние улучшилось, иначе бактери могут вывыработать устойчивость;
  • запивать антибиотики рекомендуется только водой, так они лучше действуют.

Бактерицидные препараты оказывают влияние только на бактерии, уничтожая их. Они неэффективны против вирусов и грибков, но губят полезные микроорганизмы. Потому самолечение такими препаратами недопустимо.

Источник: https://FB.ru/article/263831/bakteritsidnoe-deystvie---eto-chto-takoe-preparatyi-bakteritsidnogo-deystviya

Под действием бактерицидных антибиотиков бактерии убивают себя сами • Новости науки

Возможный механизм бактерицидного действия видимого света. Бактерицидное действие - это что такое? Препараты бактерицидного действия Группа антибактериальных препаратов с бактерицидным механизмом действия

Стал известен общий механизм, лежащий в основе бактерицидного действия большинства применяемых в настоящее время антибиотиков. Стимулируемое антибиотиками образование свободных радикалов приводит к накоплению критического количества поврежденных гуаниновых оснований в составе ДНК и РНК; попытка клетки исправить причиненный урон приводит к гибели.

Вот уже больше 50 лет человечество применяет антибиотики, благодаря чему практически избавлено от былой опасности бактериальных инфекций. Антибактериальные препараты делятся на два класса: бактерицидные, которые активно убивают бактерий с почти 100% эффективностью, и бактериостатические, которые просто останавливают рост культур.

К бактерицидным антибиотикам относятся β‑лактамы (пенициллин, амоксициллин и др.

), блокирующие синтез пептидогликана — основного компонента бактериальной клеточной стенки; фторхинолоны (ципрофлоксацин), блокирующие бактериальную топоизомеразу II в процессе работы и тем самым вызывающие невосстановимые двухцепочечные разрывы в ДНК; аминогликозиды (канамицин), связывающиеся с 30S субъединицей бактериальной рибосомы и ингибирующие трансляцию.

Большинство других ингибиторов трансляции (хлорамфеникол, спектиномицин, тетрациклин и др.) оказывает бактериостатическое действие.

Большинство антибиотиков делают одно их трех: либо нарушают трансляцию белка, либо ингибируют процессы синтеза и поддержания структуры клеточной стенки, либо нарушают репликацию и репарацию ДНК.

Благодаря отличиям физиологических процессов и структуры конкретных белков у прокариот и у эукариот антибиотики являются сравнительно нетоксичными для человека.

Взаимодействия антибиотиков и их мишеней в деталях изучены, и положение молекулы лекарства в активном центре фермента известно вплоть до отдельного атома.

Казалось бы, что осталось непонятного? Тем не менее, за годы изучения и применения антибиотиков накопилось множество разных фактов, свидетельствующих о том, что мы примитивно представляем себе процесс гибели клетки.

Например, оказалось, что бактерицидное действие фторхинолонов требует активного синтеза АТФ и наличия синтеза белка. Мутации в системе SOS-ответа (ответа на повреждения ДНК) повышают бактериальную чувствительность к фторхинолонам, и, что уж совсем странно, к пенициллинам. Наконец, оставалось непонятным, почему одни ингибиторы трансляции (аминогликозиды) приводят к быстрой смерти бактерий, в то время как другие (хлорамфеникол, спектиномицин) просто останавливают рост клеток.

В 2007 году ученые из Бостона под руководством Джеймса Коллинза (James Collins) поставили перед собой амбициозную задачу выяснить, как, собственно, ингибирование клеточных ферментов приводит к гибели клеток.

Для этого изучалось изменение транскрипции всех генов Escherichia coli в ответ на действие антибиотиков.

Неожиданно для всех оказалось, что действие всех трех классов бактерицидных антибиотиков (фторхинолоны, аминогликозиды, β‑лактамы) приводит к активации одних и тех же групп генов: ответственных за метаболизм железа, борьбу с окислительным стрессом и репарацию ДНК.

Исследователи предположили, что повреждение железо-серных кластеров в составе ферментов дыхательной цепи и высвобождение свободных ионов железа провоцирует радикальную реакцию с участием пероксида водорода, в ходе которой лавинообразно увеличивается количество гидроксил-радикалов OH·, повреждающих ДНК, белки и мембраны клетки.

Железо-серные кластеры — это комплексы связанных дисульфидными связями атомов железа, которые содержатся в активных центрах многих ферментов, осуществляющих окислительно-восстановительные реакции в клетке, например, аконитазы, NADH-дегидрогеназы, нитроредуктазы.

В Фентоновской реакции, описывающей взаимодействие ионов железа и пероксида водорода, суммарная степень окисления железа не меняется, таким образом, оно является катализатором образования свободных радикалов:

Fe2+ + H2O2 → Fe3+ + ·OH + OH−

Fe3+ + H2O2 → Fe2+ + ·OOH + H+

Перекись водорода, участвующая в реакции, постоянно образуется в клетке в процессе аэробного дыхания.

Действительно, применение веществ — захватчиков радикалов, таких как тиомочевина, позволило значительно снизить гибель клеток под действием антибиотиков; аналогичные результаты были достигнуты, когда с помощью мутаций была нарушена способность клеток синтезировать потенциально опасные железо-серные кластеры.

Дальнейшие исследования показали, что дестабилизация железо-серных белков в свою очередь вызывается супероксид-анионом O2−, который выделяется в ходе гиперактивации дыхательной цепи.

По-видимому, попытки клетки компенсировать первичное действие антибиотиков приводят к резко увеличенной выработке АТФ, что и вызывает окислительно-восстановительный дисбаланс, оказывающийся в конечном счете для нее смертельным (более подробная схема изображена на рис. 1).

В этом апреле в журнале Science вышла статья биологов из Массачусетского технологического института (MIT) под руководством Грэма Уокера (Graham Walker), продолжающая и дополняющая работы Коллинза, что подтвердилось участием последнего в публикации.

Группа Уокера занимается изучением ДНК-полимеразы E. coli DinB (про более раннюю их работу уже выходила статья на «Элементах», см. Объяснен механизм копирования сбойных блоков в ДНК, «Элементы», 19.01.2006). DinB — это полимераза транслезионного синтеза (см.

 translesion synthesis), способная работать на поврежденных ДНК-матрицах (например, содержащих окисленные нуклеотиды, или тиминовые димеры (см. thymine dimer), являющиеся непреодолимым препятствием для основной ДНК-полимеразы E. coli — ДНК-полимеразы III). dinB является жизненно важным для клетки геном, позволяющим переживать стресс.

Тем не менее, искусственное увеличение числа копий DinB («сверхэкспрессия») является смертельным для бактерии. Уокер и его коллеги решили проверить, не является ли гибель клетки и в этом случае зависящей от гидроксил-радикалов.

Для этого они проводили сверхэкспрессию DinB либо в присутствии «захватчика» свободных радикалов, тиомочевины, либо в присутствии хелатора ионов железа 2,2’‑дипиридила, либо в анаэробных условиях. Оказалось, что любое из этих ухищрений способно полностью предотвратить гибель клеток.

Одной из важных потенциальных мишеней активных форм кислорода является азотистое основание гуанин.

Окисленный гуаниновый нуклеотид, 8‑оксо-дезоксигуанидин (8‑oxo‑dG), является источником мутаций: он способен образовывать комплементарные пары как с С (цитозином), так и с А (аденином) (неповрежденный нуклеотид G в нормальных условиях образует пары только с С).

В свою очередь, полимераза DinB, обладая пониженной точностью копирования, способна использовать окисленный 8‑оксо-дезоксигуанидинтрифосфат (8‑oxo‑dGTP) в качестве субстрата, вставляя его напротив А или напротив С.

Может быть, при сверхэкспрессии DinB включает чересчур много 8‑oxo‑dG в состав ДНК, и клетка погибает от слишком большого числа мутаций? Ученые создали искусственную форму DinB, в которой замена одной аминокислоты значительно снижает возможность использования 8‑oxo‑dGTP в качестве субстрата. Как и предполагалось, сверхэкспрессия такой полимеразы безопасна для клеток.

Тем не менее, непосредственное мутагенное действие не может объяснить наблюдаемой скорости гибели клеток: DinB синтезирует ДНК очень медленно, и шанс, что достаточное количество клеток получит летальную мутацию за время эксперимента, продолжающегося несколько часов, очень невелик.

Скорее всего, причина не в самих мутациях, а в попытках клетки их исправить: виновата система эксцизионной репарации (см. base excision repair), ответственная за распознавание и удаление поврежденных оснований.

Если два окисленных гуаниновых нуклеотида расположены рядом друг с другом, действие ферментов-гликозилаз MutM и MutY может привести к образованию двухцепочечного разрыва ДНК (рис. 2). Действительно, оказалось, что удаление этих двух генов помогает клеткам выживать при сверхэкспрессии DinB.

Другим способом почти полностью защитить клетки от гибели было одновременно с DinB сверхэкспрессировать фермент MutT, способный узнавать поврежденный 8‑oxo‑dGTP еще до того, как он встроится в ДНК, и гидролизовать его.

Какая же связь между этими открытиями и бактерицидным действием антибиотиков? Оказывается, токсичное действие ·OH‑радикалов, образующихся при действии антибиотиков, в основном связано именно с окислением гуанина.

Так, сверхэкспрессия MutT способна на несколько порядков увеличить выживаемость клеток, подвергшихся действию фторхинолона, норфлоксацина, пенициллина или канамицина.

К схожим результатам приводит «выбивание» генов двух полимераз, способных включать в состав ДНК 8‑oxo‑dG (DinB и UmuDC) или генов гликозилаз MutM и MutY, репарирующих поврежденное основание.

Таким образом, долгий путь к установлению истинных причин гибели клеток под действием антибиотиков почти пройден; практическое применение полученных знаний позволит, как надеются ученые, значительно усилить потенциал существующих антибиотиков и преодолеть возникающую у микроорганизмов резистентность.

Источник: James J. Foti, Babho Devadoss, Jonathan A. Winkler, James J. Collins, Graham C. Walker. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics // Science. 2012. V. 336. Pp. 315–319.

См. также:
1) Daniel D. Dwyer, Michael A. Kohanski, Boris Hayete, James J. Collins. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli // Mol Syst Biol. 2007 V. 3. P. 91.
2) Michael A. Kohanski, Daniel J. Dwyer, Boris Hayete, Carolyn A.

 Lawrence, James J. Collins. A common mechanism of cellular death induced by bactericidal antibiotics // Cell. 2007. V. 130. Pp. 797–810.
3) Michael A. Kohanski, Daniel D. Dwyer, James J. Collins. How antibiotics kill bacteria: from targets to networks // Nat Rev Microbiol. 2010. V. 8. Pp.

 423–435.

Дмитрий Гиляров

Источник: https://elementy.ru/news/431821

Консультант Кузнецов
Добавить комментарий