Развертка пирамиды. Как построить развертку шестиугольной пирамиды

Начертательная геометрия | Лекция 6. Многогранники

Развертка пирамиды. Как построить развертку шестиугольной пирамиды

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1000 р./ак.ч.

Многогранником называется тело, ограниченное плоскими многоугольниками, которые называется гранями.

Грани, пересекаясь, образуют ребра.
Ребра, пересекаясь, образуют вершины.
Рассмотрим два основных вида многогранников:

Пирамида – многогранник, у которого боковыми гранями являются треугольники, а основанием – многоугольник.

Упражнение

Дана пирамида, основание которой  параллельно π1. Основание представляет собой некоторый треугольник.

S – вершина пирамиды (Рисунок 6.1).

Рисунок 6.1 – Пересечение поверхности пирамиды прямой

Требуется построить точки пересечения прямой m общего положения с поверхностью пирамиды.

Решение

  1. Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
  2. Строим сечение ∆ (123) поверхности пирамиды с плоскостью σ.

Решение задачи сводится к нахождению линии пересечения плоскостей общего положения (боковые грани пирамиды) и плоскости частного положения (плоскость σ).

Примечание. При наличии круто падающих рёбер (близких к вертикали), построение недостающей проекции точки на ребре по одной данной проекции  необходимо выполнять при помощи пропорционального деления отрезка.

  1. В сечении находим точки M и N принадлежащие прямой m.
  2. Определяем видимость прямой m.

Развёрткой многогранника называется фигура, полученная в результате последовательного совмещения граней многогранника с плоскостью.

Развёртка всегда строится наружной (лицевой) стороной к наблюдателю.

Для построения развёртки пирамиды нужно определить истинные величины всех рёбер пирамиды и построить грани пирамиды в виде треугольников, последовательно присоединяя их друг к другу.

Основание можно присоединить к любой грани, например, АС (Рисунок 6.2).

Рисунок 6.2 – Построение развёртки пирамиды

В упражнении истинные значения ребер определены способом вращения. Для построения линии сечения на развертке, на истинных величинах рёбер построим точки \overline{1},\overline{2},\overline{3}, проведя горизонтальные линии (траектории перемещения точек 1, 2, 3) до пересечения с соответствующими истинными проекциями ребер.

6.2. Призма. Развертка призмы

Призма – многогранник, у которого боковыми гранями являются параллелограммы, а основания – многоугольники, лежащие в параллельных плоскостях.

6.3. Взаимное пересечение многогранников

В результате пересечения многогранников получим ломаную линию.

Возможны два случая пересечения многогранников (Рисунок 6.5):

Рисунок 6.5 – Варианты пересечения многогранников

Вершины ломаной – точки пересечения рёбер одного многогранника с гранями другого.

Звенья ломаной – линии пересечения граней.

Для решения задачи нужно найти вершины ломаной, то есть точки пересечения всех рёбер, участвующих в пересечении.

Построенные точки соединить.

6.4. Задачи для самостоятельной работы

1-4. Построить линию пересечения гранных поверхностей. Показать видимость (Рисунки 6.8 – 6.11).

Рисунок 6.8

Рисунок 6.9

Рисунок 6.10

Рисунок 6.11

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1000 р./ак.ч.

Источник: https://cadinstructor.org/ng/lectures/6-mnogogranniki/

Пирамида – развертка. Развертка пирамиды для склеивания. Развертки из бумаги

Развертка пирамиды. Как построить развертку шестиугольной пирамиды

Прямоугольник, квадрат, треугольник, трапеция и другие – геометрические фигуры из раздела точной науки. Пирамида – это многогранник. Основанием этой фигуры является многоугольник, а боковыми гранями треугольники, имеющие общую вершину, или трапеции. Для полного представления и изучения любого геометрического объекта изготавливают макеты.

Используют самый разнообразный материал, из которого выполняется пирамида. Поверхность многогранной фигуры, развернутая на плоскости, называется ее разверткой. Создать макет поможет метод преобразования плоских предметов в объемные многогранники и определенные знания из геометрии. Развертки из бумаги или картона изготовить непросто.

Потребуется умение выполнять чертежи по заданным размерам.

Материалы и приспособления

Моделирование и выполнение многогранных объемных геометрических фигур – интересный и захватывающий процесс. Из бумаги можно выполнить большое количество всевозможных макетов. Для работы будут необходимы:

  • бумага или картон;
  • ножницы;
  • карандаш;
  • линейка;
  • циркуль;
  • ластик;
  • клей.

Определение параметров

Прежде всего определим, какой будет пирамида. Развертка данной фигуры является основой для изготовления объемной фигуры. Выполнение работы потребует предельной точности. При неправильном чертеже геометрическую фигуру собрать будет невозможно. Допустим, необходимо изготовить макет правильной треугольной пирамиды.

Любое геометрическое тело обладает определенными свойствами. Данная фигура имеет основанием правильный многоугольник, а ее вершина спроецирована в его центр. В качестве основания выбран равносторонний треугольник. Данное условие определяет название.

Боковые ребра у пирамиды – это треугольники, количество которых зависит от выбранного для основания многогранника. В данном случае их будет три. Также важно знать размеры всех составных частей, из которых будет составлена пирамида. Развертки из бумаги выполняются в соответствии с учетом всех данных геометрической фигуры.

Параметры будущей модели оговариваются заранее. От этих данных зависит выбор используемого материала.

Как выполняется развертка правильной пирамиды?

Основой модели является лист бумаги или картона. Работу начинают с чертежа пирамиды. Фигура представляется в развернутом виде. Плоское изображение на бумаге соответствует заранее выбранным размерам и параметрам. Правильная пирамида имеет основанием правильный многоугольник, а высота проходит через его центр. Изготавливаем для начала простую модель.

В данном случае – это треугольная пирамида. Определяем размеры выбранной фигуры. Чтобы построить развертку пирамиды, основанием которой является правильный треугольник, в центре листа, используя линейку и карандаш, нарисуем основание заданных размеров. Далее к каждой его стороне вычерчиваем боковые грани пирамиды – треугольники. Теперь переходим к их построению.

Размеры сторон треугольников боковой поверхности измеряем циркулем. Ножку циркуля ставим в вершину нарисованного основания и делаем засечку. Действие повторяем, перемещаясь в следующую точку треугольника. Пересечение, полученное в результате таких действий, определит вершины боковых граней пирамиды. Их соединяем с основанием. Получаем чертеж пирамиды.

Для склеивания объемной фигуры на сторонах боковых граней предусматривают клапаны. Дорисовываем небольшие трапеции.

Вырезаем ножницами выполненный рисунок по контуру. Аккуратно сгибаем развертку по всем линиям. Клапаны-трапеции заправляем внутрь фигуры таким образом, чтобы ее грани сомкнулись. Их смазываем клеем. Через тридцать минут клей высохнет. Объемная фигура готова.

Развертка четырехугольной пирамиды

Сначала представим, как выглядит геометрическая фигура, макет которой будем изготавливать. Основанием выбранной пирамиды является четырехугольник. Боковые ребра – треугольники. Для работы используем те же материалы и приспособления, что и в предыдущем варианте. Чертеж выполняем на бумаге карандашом. В центре листа чертим четырехугольник с выбранными параметрами.

Каждую сторону основания делим пополам. Проводим перпендикуляр, который будет являться высотой треугольной грани. Раствором циркуля, равным длине боковой грани пирамиды, делаем на перпендикулярах засечки, установив его ножку в вершину основания.

Оба угла одной стороны основания соединяем с полученной точкой на перпендикуляре. В результате получаем в центре чертежа квадрат, на гранях которого нарисованы треугольники. Чтобы зафиксировать модель на боковых гранях, дорисовывают вспомогательные клапаны.

Для надежного крепления достаточно полоски сантиметровой ширины. Пирамида готова к сборке.

Завершающий этап выполнения макета

Полученную выкройку фигуры вырезаем по контуру. По начерченным линиям сгибаем бумагу. Сбор объемной фигуры производят путем склеивания. Предусмотренные клапаны смазываем клеем и фиксируем полученную модель.

Объемные макеты сложных фигур

После выполнения простой модели многогранника можно перейти к более сложным геометрическим фигурам. Развертка пирамиды усеченной намного сложнее в выполнении. Ее основаниями являются подобные многогранники.

Боковые грани – это трапеции. Последовательность выполнения работы будет такой же, как та, в которой изготавливалась простая пирамида. Развертка будет более громоздкой.

Для выполнения чертежа используют карандаш, циркуль и линейку.

Построение чертежа

Развертка пирамиды усеченной выполняется в несколько этапов. Боковой гранью усеченной пирамиды является трапеция, а основаниями – подобные многогранники. Допустим, что это квадраты.

На листе бумаги выполняем чертеж трапеции с заданными размерами. Боковые стороны полученной фигуры продлеваем до пересечения. В результате получаем равнобедренный треугольник. Его сторону измеряем циркулем.

На отдельном листе бумаги строим окружность, радиусом которой будет измеренное расстояние.

Следующий этап – это построение боковых ребер, которые имеет усеченная пирамида. Развертка выполняется внутри нарисованной окружности. Циркулем измеряют нижнее основание трапеции. На окружности отмечаем пять точек, которые соединяют линии с ее центром.

Получаем четыре равнобедренных треугольника. Циркулем измеряем сторону трапеции, нарисованной на отдельном листе. Данное расстояние откладываем на каждой стороне нарисованных треугольников. Полученные точки соединяем. Боковые грани трапеции готовы.

Остается только нарисовать верхнее и нижнее основания пирамиды. В данном случае это подобные многогранники – квадраты. К верхнему и нижнему основаниям первой трапеции дорисовываем квадраты. На чертеже изображены все части, которые имеет пирамида. Развертка практически готова.

Остается только дорисовать соединительные клапаны на сторонах меньшего квадрата и одной из граней трапеций.

Завершение моделирования

Перед склеиванием объемной фигуры чертеж по контуру вырезают ножницами. Далее развертку аккуратно сгибают по начерченным линиям. Крепежные клапаны заправляем внутрь модели. Их смазываем клеем и прижимаем к граням пирамиды. Модели даем высохнуть.

Изготовление разных моделей многогранников

Выполнение объемных моделей геометрических фигур – увлекательное занятие. Чтобы его досконально освоить, следует начинать с выполнения самых простых разверток. Постепенно переходя от простых поделок к более сложным моделям, можно приступать к созданию самых замысловатых конструкций.

Источник: https://FB.ru/article/143219/piramida---razvertka-razvertka-piramidyi-dlya-skleivaniya-razvertki-iz-bumagi

Как сделать пирамиду из бумаги. Схема с размерами, пошаговая инструкция с фото

Развертка пирамиды. Как построить развертку шестиугольной пирамиды

Если вас интересует, как сделать идеальную по формам и граням пирамиду из бумаги существует определенная схема с размерами, чтобы в итоге получилась правильная фигура. Бумажная пирамида может быть оригинальным подарком, сделанным своими руками или просто интересной поделкой.

Как сделать пирамиду из бумаги. Пошаговая инструкция

Благодаря древнему мастерству оригами есть возможность воссоздавать практически любую фигуру из бумаги, в том числе и пирамиду. Существует несколько способов, как создать идеальную фигуру с четкими гранями. Для новичков в этом деле есть легкий пошаговый совет, как сделать фигуру из картона. Данная инструкция будет понятна как взрослым, так и детям.

Пошаговое руководство, как склеить пирамиду из картона:

  1. На бумажном листе нужно нарисовать один ровный квадрат и три треугольника. Каждая сторона квадрата должна быть примерно 15 см. Ширину треугольника стоит сделать такой же, а высоту 27 см.
  2. Ножницами вырезать заготовки не по контуру, а с отступом 3-4 мм, в дальнейшем это будет необходимо при склеивании фигуры.
  3. Смазать клеем все части, дать ему немного подсохнуть и сложить все детали в единую конструкцию.
  4. Дать полностью высохнуть поделке и можно приступить к декору.

Как украсить пирамиду — может быть любая воля фантазии. Например, на нее можно наклеить фигурки, обмотать фольгой или раскрасить специальными акриловыми красками.

Определяем параметры

Чтобы изделие получилось аккуратным и красивым стоит задать четкие параметры при изготовлении заготовок для будущей пирамиды. Для каждой части может понадобиться отдельный лист бумаги. Можно скачать уже готовые схемы, но их также просто нарисовать самостоятельно.

Главное знать, что ширина треугольника должна быть равна каждой длине грани квадрата.

Высоту геометрической фигуры можно выбрать любую, но рекомендуемая длина, чтобы она была больше на 10-15 см ширины заготовки. Именно при таком соотношении фигура будет смотреться гармонично.

Строим чертеж

Чтобы было проще узнать, как сделать идеальную пирамиду из бумаги или каких-либо других материалов существует схема с размерами. Чертеж – основа для дальнейшего склеивания компонентов для будущей цельной фигуры. Существует несколько видов пирамид, для каждой из них свой чертеж.

Но есть один простой способ, который подходит для детей и новичков в этом деле:

  1. В основании пирамиды должен быть правильный многоугольник, с проходящий высотой через его центр. Заранее стоит определить размеры пирамиды, для каждого они могут быть индивидуальны.
  2. Нужно нарисовать четыре квадрата, три из них будут нужны для треугольников.
  3. На одной из боковых сторон нужно определить середину линии. От двух углов основания следует провести две линии в отмеченную точку, чтобы получилась вершина пирамиды.
  4. Заготовки равнобедренных треугольников нужно будет соединить с квадратом с помощью специальных отступов. Стоит не забыть, что вырезать заготовки нужно прибавив к их краям полсантиметра для того чтобы было удобно склеить фигуру.

Способ 2

Такая схема пирамиды подразумевает использование готовой заготовки, которую можно скачать и распечатать на принтере. Этот вариант самый простой, так как не придется чертить фигуры самостоятельно. Главное подготовить все необходимые инструменты и оригинально украсить изделие на этапе декорирования.

Способ 3

Существует достаточно много советов, как сделать пирамиду из бумаги, определенная схема с размерами является неотъемлемой частью в выполнении оригами:

  1. Квадратный лист сложить, чтобы углы лежали противоположно друг к другу, лишнюю бумагу отрезать ножницами. Таким способом можно сделать ровный квадрат.
  2. Заготовку свернуть по одной диагонали, раскрыть и свернуть по другой и снова развернуть. Так намечаются нужные линии.
  3. Взять половинки квадрата, свернуть из него треугольник в два слоя. К центру свернуть два угла от основания. Аналогично повторить со второй стороны фигуры.
  4. Согнуть уголки к центру с одной стороны и с другой.
  5. Разогнуть ромб с каждой стороны, уголки его направить внутрь.
  6. Пирамиду нужно выгнуть так чтобы получилась звезда с четырьмя гранями. Фигуру взять двумя руками за разные концы и придать ей форму.

Постепенно придавая объекту форму, начнет получаться пирамида. Очень важно знать, что на последнем этапе нужно действовать аккуратно, стараясь не порвать случайно поделку.

Способ 4

Необходимые инструменты для поделки:

  • бумажный лист,
  • треугольник,
  • ножницы,
  • карандаш,
  • клей,
  • ластик.

Выполнение:

  1. Вырезать квадрат. Согнуть заготовку пополам в разные стороны, чтобы образовались складки.
  2. Диагональ треугольника приложить к каждой из сторон квадрата и по сгибам сделать отметки.
  3. При помощи линий соединить треугольник с вершинами. Для точности рекомендуется использовать линейку.
  4. Отметить карандашом линии склейки сторон.
  5. Фигуру вырезать и нанести клей на линии склеивания.

Как сделать пирамиду из картона?

Сделать фигуру из картона своими руками можно быстро и просто. Использовать можно любую расцветку бумаги, но лучше всего подойдет цвет золота, бежевый, светло-коричневый.

Для того чтобы изделие выглядело более реалистично, то по бумажной заготовке можно произвести линии иголкой горизонтальные и вертикальные.

Благодаря этому будет создаваться эффект реальной мини-пирамиды из Гизы.

По вышеперечисленным пошаговым способам можно создать фигуру с гранями. Картонная пирамида делается по такому же принципу как из простой бумаги.

Но есть большой плюс, что ее можно украсить, например сахарным песком:

  • Изделие можно покрыть полностью прозрачным клеем и нанести на него сахарный песок. Таким способом можно создать интересный сияющий эффект.
  • Также пирамиду можно посыпать песком, предварительно обмазав ее клеем. Фигура приобретет эффект реалистичности.

«Золотое сечение» в пропорциях пирамиды

Эталон идеальной пирамиды – определенные правильные пропорции. Ключом к созданию правильной фигуры лежит коэффициент и цифры 7,23. Число, которое имеет значение в науке математике и геометрии, также эти цифры важны в архитектуре и даже медицине.

Отрезок длиной 7,23 нужно умножить на коэффициент 1,618. Полученное число 116, 981 следует округлить до 117 см. Эта длина является основанием пирамиды.

Также для получения больших моделей данное число можно умножать в несколько раз. Таким образом, длина нашей пирамиды получается 117 мм, а высота 72 мм.

По теореме Пифагора можно определить длину граней треугольника. Получится число 92,769, его нужно округлить до 93. Эти данные подстроены под идеальную пропорцию «Золотого сечения».

Как сделать развертку четырехугольной пирамиды?

Для изготовления четырехугольной фигуры потребуется:

  • плотная бумага или картон,
  • простой карандаш,
  • линейка,
  • ножницы,
  • клей.

Этапы:

  1. Для начала нужно сделать выкройку, в которой основание будет 8 см, а высота 6,5 см.
  2. На листе бумаги нужно нарисовать ровный квадрат, отметить на каждой его грани середину.
  3. Провести из средних точек линии перпендикулярно квадрату, длиной 6,5 см — их всего должно получиться 4.
  4. Из каждой вершины провести по две линии к углам квадрата, так чтобы получились треугольники.
  5. Вырезать заготовку и сложить треугольники так чтобы они сошлись в единую вершину. Склеить фигуру.

Четырехугольную фигуру несложно изготовить самостоятельно. Также на основе этой пошаговой инструкции можно создавать пирамиды больше по размерам.

Как выполнить развертку правильной пирамиды?

Чтобы понимать как сделать пирамиду из бумаги, необходимо знать схему с размерами.

Если интересно как сделать пирамиду с разверткой из бумаги, существует не одна схема с размерами, которая поможет правильно выполнить фигуру.

В момент проектирования развертки за основу берется правильный треугольник. Боковая поверхность представлена как плоский чертеж, состоящий из граней и многоугольника.

Для начала определяется натуральная величина основания и истинная величина всех ребер (можно произвести при помощи циркуля). После того как три стороны были найдены строится основание и боковая грань. Берется произвольная точка и из нее проводится дуга равная длине боковых ребер заготовки. На дуге отмечаются четыре отрезка, равные основанию пирамиды.

Все линии соединяются, в том числе с произвольной точкой. К одному из получившихся треугольников пририсовывают квадрат, который равен основанию фигуры.

Сложные фигуры: объемные макеты

Фигуры такого типа делаются для получения навыков в работе с объемными изделиями из бумаги и в целях обучения детей начальным азам геометрии. Из таких моделей можно смастерить оригинальную подарочную упаковку. Иногда бывает сложно разработать правильную развертку, рекомендуется обладать хотя бы небольшими знаниями черчения.

Носуществуют готовые трафареты, которые можно будет распечатать с принтера. Макеты используются не только в развлекательных целях, но и в обучающих. Ребенку можно наглядно показывать, как выглядит та или иная фигура. Сложные модели могут быть: куб, октаэдр, додекаэдр, икосаэдр и другие.

https://www.youtube.com/watch?v=vRUx4fK3CrM

Перед тем как начать выполнять черчение фигуры стоит представить ее в 3D формате, сколько она имеет граней и измерений.

На листе бумаги нужно нарисовать грани, так чтобы они между собой правильно соединялись. У каждой фигуры есть свой определенный тип грани. Ребра тоже должны быть одинаковой длины, чтобы при скреплении не появились несостыковки. Если макет имеет одинаковые стороны, то в момент черчения можно нарисовать шаблон и по нему рисовать остальные заготовки.

3D макеты важны при обучении детей: они дают ученикам возможность подержать фигуры в руках, рассмотреть их и лучше понять строение. Также при изучении некоторых теорем (Эйлера) рекомендуется наглядное пособие.

Моделирование различных многогранников

Чтобы научиться выполнять более сложные модели, стоит начать с азов, например, с 3D треугольников. Постепенно улучшая навык в создании простых макетов можно приступить к сложным моделям. Сложные фигуры требуют навыков и отточенной сноровки при выполнении, например в момент развертки или придавания формы фигуре, нужно действовать так чтобы она случайно не порвалась.

При выполнении чертежа следует внимательно наносить разметки и уметь рисовать фигуры.

Если есть вопрос, как сделать качественную пирамиду из бумаги, существует подробная схема с индивидуальными размерами. Стоит лишь приложить немного усилий, и тогда составит труда выполнить красивую и качественную работу, которая будет радовать глаз.

Благодаря вышеперечисленным способам можно легко создать различные макеты пирамид. Не сложно научиться выполнять эти техники, главное соблюдать все этапы постепенно и внимательно.

о том, как сделать пирамиду из бумаги

Как сделать пирамиду из бумаги, узнайте в видео-ролике:

Схема выполнения объемной пирамиды:

Источник: https://handsmake.ru/kak-sdelat-piramidu-iz-bumagi-shema-s-razmerami.html

Пошаговое решение задачи №4 – Построение развертки призмы и пирамиды и нанесение на нее их линии пересечения

Развертка пирамиды. Как построить развертку шестиугольной пирамиды

Необходимо построить развертки гранных тел и нанесения на развертку линии пересечения призмы и пирамиды.

Для решения этой задачи по начертательной геометрии  необходимо знать:

— сведения о развертках поверхностей, способах их построения и, в частности, построение разверток гранных тел;

— взаимно-однозначные свойства между поверхностью и ее разверткой и способы перенесения точек, принадлежащих поверхности, на развертку;

— методы определения натуральных величин геометрических образов (линии, плоскости и др.).

Порядок решения Задачи

Разверткой называется плоская фигура, которая получается при разрезании и разгибании поверхности до полного совмещения с плоскостью. Все развертки поверхностей (заготовки, выкройки) строятся только из натуральных величин.

1. Поскольку развертки строятся из натуральных величин, приступаем к их определению, для чего па кальку (миллиметровку или другую бумагу) формата A3, переносится задача № з со всеми точками и линиями пересечений многогранников.

2. Для определения натуральных величин ребер и основания пирамиды используем метод прямоугольного треугольника. Безусловно, можно и другие, но на мой взгляд, этот метод более доходчив для студентов.

Суть его заключается в том, что «на построенном прямом угле откладывается на одном катете проекционная величина отрезка прямой, а на другом — разность координат концов данного отрезка, взятая с сопряженной плоскости проекций.

Тогда гипотенуза полученного прямого угла дает натуральную величину данного отрезка прямой».

Рис.4.1

Рис.4.2

Рис.4.3

3. Итак, на свободном месте чертежа (рис.4.1.а) строим прямой угол.

По горизонтальной линии этого угла откладываем проекционную величину ребра пирамиды DA взятую с горизонтальной плоскости проекций — lDA.

По вертикальной линии прямого угла откладываем разность координат точек Dи A, взятых с фронтальной плоскости проекций (по оси z вниз) — .

Соединив полученные точки гипотенузой, получим натуральную величину ребра пирамиды |DA|.

Таким образом определяем натуральные величины других ребер пирамиды DB и DC, а также основания пирамиды АВ, ВС, АС(рис.4.2), для которых строим второй прямой угол.

Заметим, что определение натуральной величины ребра DC производится в тех случаях, когда на исходном чертеже он дан проекционно.

Это легко определяется, если вспомним правило: «если прямая па какой-либо плоскости проекций параллельна оси координат, то на сопряженной плоскости она проецируется в натуральную величину».

В частности, в примере нашей задачи фронтальная проекция ребра DC параллельна оси х, следовательно, в горизонтальной плоскости DC сразу выражена в натуральной величине |DC| (рис.4.1).

Рис.4.4

4. Определив натуральные величины ребер и основания пирамиды, приступаем к построению развертки (рис.4.4). Для этого на листе формата бумаги ближе к левой стороне рамки берем произвольную точку D считая, что это вершина пирамиды.

Проводим из точки D произвольную прямую и откладываем на ней натуральную величину ребра |DA|, получая точку А.

Тогда из точки А, взяв на раствор циркуля натуральную величину основания пирамиды R=|АВ| и поместив ножку циркуля в точку А делаем дуговую засечку.

Далее берем на раствор циркуля натуральную величину ребра пирамиды R=|DB| и, поместив ножку циркуля в точку D делаем вторую дуговую засечку.

В пересечении дуг получаем точку В, соединив ее с точками А иD получаем грань пирамиды DАВ. Аналогичным образом пристраиваем к ребру DB грань DBC, а к ребру DC — грань DCА.

К одной из сторон основания, например ВC, пристраиваем основание пирамиды также методом геометрических засечек, беря на раствор циркуля величины сторон АB и AС и делая дуговые засечки из точек B и C получая точку A (рис.4.4).

5. Построение развертки призмы упрощается тем, что на исходном чертеже в горизонтальной плоскости проекций основанием, а во фронтальной – высотой 85мм, она задана сразу в натуральную величину

Для построения развертки мысленно разрежем призму по какому-либо ребру, например по E, закрепив его на плоскости, развернем другие грани призмы до полного совмещения с плоскостью. Вполне очевидно, что получим прямоугольник, у которого длиной является сумма длин сторон основания, а высотой — высота призмы – 85мм.

Итак, для построения развертки призмы поступаем:

— на том же формате, где построена развертка пирамиды, с правой стороны проводим горизонтальную прямую линию и от произвольно взятой точки на ней, например E, последовательно откладываем отрезки основания призмы EK, KG, GU, UE, взятые с горизонтальной плоскости проекций;

— из точек E, K, G, U, E восстанавливаем перпендикуляры, на которых откладываем высоту призмы, взятую с фронтальной плоскости проекций (85мм);

— соединяя полученные точки прямой, получаем развертку боковой поверхности призмы и к одной из сторон основания, например, GU пристраиваем верхнее и нижнее основание методом геометрических засечек, как выполняли при построении основания пирамиды.

Рис.4.5

6. Для построения линии пересечения на развертке используем правило, гласящее о том, что «любой точке на поверхности соответствует точка на развертке». Возьмем, например, грань призмы GU, где проходит линия пересечения с точками 1-2-3;.

Отложим на развертке основания GU точки 1,2,3 по расстояниям, взятым с горизонтальной плоскости проекции.

Восстановим из этих точек перпендикуляры и отложим на них высоты точек 1’, 2’, 3’, взятые с фронтальной плоскости проекции – z1, z2 и z3. Таким образом, на развертке получили точки 1, 2, 3, соединив которые получаем первую ветвь линии пересечения.

Аналогично переносятся, все остальные точки. Построенные точки соединяются, получая вторую ветвь линии пересечения. Выделяем красным цветом – искомая линия. Добавим, что при неполном пересечении гранных тел, на развертке призмы будет одна замкнутая ветвь линии пересечения.

7. Построение (перенесение) линии пересечения на развертке пирамиды производится таким же образом, но с учетом следующего:

— поскольку развертки строятся из натуральных величин, необходимо перенести положение точек 1-8 линии пересечения проекций на линии ребер натуральных величин пирамиды.

Для этого возьмем, например, точки 2 и 5 во фронтальной проекции ребра DA  перенесем их на проекционную величину этого ребра прямого угла (рис.4.

1) по линиям связи параллельным оси х, получим искомые отрезки |D2| и |D5| ребра DA в натуральных величинах, которые и откладываем (переносим) на развертку пирамиды;

— аналогично переносятся все другие точки линии пересечения, в том числе и точки 6 и 8, лежащие на образующих Dm и Dn для чего на прямом угле (рис.4.3) определяются натуральные величины этих образующих, а затем на них переносятся точки 6 и 8;

— на втором прямом угле, где определены натуральные величины основания пирамиды, переносятся точки m и n пересечений образующих с основанием, которые впоследствии переносятся на развертку.

Таким образом, полученные на натуральных величинах точки 1-8 и перенесенные на развертку, соединяем последовательно прямыми линиями и окончательно получаем линию пересечения пирамиды на ее развертке.

Раздел: Начертательная геометрия / 

Источник: http://stud55.ru/postroenie-razvertki-prizma-pyramida/

Консультант Кузнецов
Добавить комментарий