Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

Вольфрам – свойства и область применения

Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

Из всех известных сегодня металлов вольфрам самый тугоплавкий. Он занимает 74-ю позицию периодической системы, имеет ряд схожих свойств с молибденом и хромом, находящимися с ним в одной группе. На вид вольфрам представляет твердое вещество серого цвета, с характерным серебристым блеском.

Основные характеристики вольфрама

Для практического применения наиболее важны высокие показатели следующих характеристик:

  • электрическое сопротивление;
  • коэффициент линейного расширения;

Чистый вольфрам обладает высокой пластичностью, не растворяется в специальном кислотном растворе без предварительного нагрева хотя бы до 5000С.

Он легко вступает в реакцию с углеродом, следствием которой является образование карбида вольфрама известного высокой прочностью. Также металл известен своими оксидами, наиболее распространенный из них вольфрамовый ангидрид.

Его главное преимущество над остальными, возможность восстановления порошка к состоянию компактного металла, с побочным образованием низших оксидов.

Режущие пластины фирмы Sandvik Coromant с применением карбида вольфрама

Среди основных характеристик, делающих применение вольфрама затруднительным называют следующие:

  • ломкость и склонность к окислению при низких температурах.

Кроме того, высокая температура кипения, а также точка испарения затрудняют добычу компактного материала.

Сплавы, содержащие вольфрам

Сегодня различают однофазные сплавы вольфрама. Это подразумевает внедрение одного или нескольких элементов. Наиболее известны соединения вольфрама с молибденом. Легирование этим элементом повышает прочность вольфрама при его растяжении. Также к однофазным сплавам относятся системы: вольфрам-титан/цирконий, ниобий, гафний.

Однако большей пластичности придает вольфраму рений, сохраняя остальные показатели на характерном ему высоком уровне. Но практическое применение таких соединений ограничено трудностями при добыче Re.

Поскольку вольфрам наиболее тугоплавкий материал, получить его сплавы трудно традиционным способом. При температуре плавления вольфрама другие металлы уже кипят или даже переходят в газообразную фазу.

Современные технологии позволяют получать ряд сплавов с помощью электролиза.

Например, вольфрам — никель — кобальт, который используется не для изготовления целых деталей, а с целью нанесения защитного слоя на менее прочные металлы.

Также в промышленности все еще остается актуальным способ получения вольфрамовых сплавов, используя методы порошковой металлургии. При этом требуется создание особых условий технологического процесса, который включает в себя наличие вакуума.

Особенности взаимодействия металлов с вольфрамом делают предпочтительными соединения не парного характера, а с использованием 3, 4-х и более компонентов.

Такие сплавы отличаются особенной твердостью, однако малейшее отклонение от процентного содержания того или иного элемента приводит к повышению хрупкости готового сплава.

Получение вольфрама: порошок и компактный металл

Вольфрам, как многие другие элементы редкой группы, не встречается в природе. Поэтому добыча металла не сопровождается строительством крупных промышленных комплексов. Сам процесс получения материала условно делят на такие этапы:

  1. Добыча руды, содержащей редкий металл.
  2. Создание условий для возможного выделения вольфрама от перерабатываемой массы.
  3. Концентрирование материала в виде раствора или осадка.
  4. Очищение полученного химического соединения.
  5. Получение чистого вещества.

Вольфрамовая руда

Более сложным оказывается процесс изготовления компактного металла, к примеру, вольфрамовой проволоки. Основная трудность заключается в том, что нельзя допустить даже малейшего попадания примесей, резко ухудшающих плавкие и прочностные свойства.

Область применения вольфрама

С помощью этого металла изготавливают нити накаливания, рентгеновские трубки, нагреватели, экраны вакуумных печей, предназначающихся для использования в высокотемпературном режиме.

Рентгеновская трубка с нитью из вольфрама

Сталь, легированная вольфрамом имеет высокие прочностные качества.

Продукция из таких видов сплава используется для изготовления инструментов широкого предназначения: медицина, бурение скважин, изделия для обработки материалов в машиностроении (режущие пластины, как на фото выше).

Преимуществом соединения считается устойчивость к истиранию, маловероятность появления трещин в процессе эксплуатации. Наиболее известная в строительстве марка стали с использованием вольфрама называется «победит».

Лом вольфрама

Химическая промышленность также нашла применение вольфраму. Из него делают краски, катализаторы, пигменты.

Атомная промышленность использует тигли из этого металла, а также специальные контейнера для хранения радиоактивных отходов.

О нанесении покрытий из вольфрама уже вкратце упоминалось. Оно применяется для нанесения на материалы, работающие при высоких температурах в восстановительных и нейтральных средах, как защитная пленка.

Также известны прутки, используемые при дуговой сварке. Поскольку вольфрам неизменно остается тугоплавким металлом при выполнении сварочных работ он используется с присадочными проволоками.

Источник: https://xlom.ru/vidy-metalloloma/volfram-svojstva-i-oblast-primeneniya/

Вольфрам

Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

 
Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек.

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»).

Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку.

Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C).

Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Запасы и добыча

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C.

Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток.

Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4).

Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее.

Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия.

Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.

Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию.

Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.

Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества.

Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

Кристаллографические свойства

Источник: http://mineralpro.ru/minerals/tungsten/

Вольфрам металл или неметалл

Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

Вольфрам (W) – удивительный металл с прекрасными физическими и химическими характеристиками. Его активно применяют практически во всех отраслях промышленности.

Физические свойства вольфрама:

  • твердый тугоплавкий и тяжелый металл (вес вольфрама почти в 2 раза больше, чем у свинца);
  • масса вольфрама составляет 184 г/моль;
  • сплавы W отличаются прочностью, твердостью и высоким сопротивлением к высоким температурам;
  • цвет зависит от способа получения (порошок имеет серый, темно-серый или черный цвет, сплавленный W – серый оттенок, напоминающий цвет платины);
  • плотность вольфрама при нормальних условиях равна 19, 25 г/м3.

Температура плавления вольфрама составляет 3410 °C — соизмерима с температурой на поверхности Солнца – 6690 °C. Высокая твердость вольфрама позволяет применять его в химической промышленности и металлургии. При этом сопротивление вольфрама зависит только от температуры.

Химические свойства вольфрама:

  • в природе состоит из стабильных изотопов (5 штук), массовые числа которых находятся в пределах 180-186;
  • отделение 74 электронов атома W происходит легко;
  • обладает 6 валентностью, в соединениях может иметь 0, 2, 3, 4 и 5-валентным;
  • орбита элемента включает 2 яруса, что позволяет образовать крепкую химическую связь.

Наука относит вольфрам к химически активным элементам. Он может вступать в различные реакции и образовывать как простые, так и сложные соединения. В сплавах W чаще всего остается химически связанным. При этом с окислителями (например, с кислородом) он реагирует быстрее, чем другие металлы рода «тяжеловесов».

В случае нагревания элемента он еще быстрее вступает в реакцию с кислородом. Если в реакции участвуют водные пары, реакция протекает гораздо быстрее. Ученые выяснили: при нагреве элемента до 500 °C получается WO2 — низкий окислитель с высокой устойчивочтью.

Он затягивает поверхность металла коричневой пленкой. Если повышать температуру — можно получить еще один окислитель, который называют промежуточным (W4O11). Он имеет синюю окраску, а если продолжить нагрев до температуры в 923°C, она изменится на лимонно-желтую.

Этому будет способствовать WO3.

Если с вольфрамом смешивают сухой фтор, то даже при небольшом подогреве можно получить вещество WF6. Его именуют гексафторидом. Оно может плавиться даже при 2,5 градусах, а кипеть при 19,5. Такое же соединение можно получить и при использовании хлора. Однако для этой реакции потребуется высокая температура — около 600 °C.

Также вольфрам легко вступает в реакции с йодом и бромом. С ними он образовывает такие малоустойчивые соединения как дибромид, ментамид, а также дииодид и тетрадид. При высоких температурах вольфрам соединяется с селеном, азотом, серой, а также с кремнием и углеродом.

Одним из интересных соединений считают карбонил. В этой реакции вольфрам реагирует на окись углерода. Именно здесь и проявляется его нулевая валентность. Однако это вещество сложно назвать устойчивым. Поэтому его можно получить только при создании специальных условий. Из карбонила получают плотные и ультратонкие покрытия чистого вольфрама.

Нужно уделить внимание и вольфрамовым соединениям. Некоторые из них поддаются полимеризации, в частности окись вольфрама.

Свойства атома

  • Имя, символ, номер  —   Вольфрам/Wolframium (W), 74
  • Атомная масса (молярная масса), г/моль  —   183,84 а. е. м.
  • Электронная конфигурация  —   [Xe] 4f14 5d4 6s2
  • Радиус атома, пм  —   141

Химические свойства

  • Ковалентный радиус, пм  —  170
  • Радиус иона, пм  —  (+6e) 62 (+4e) 70
  • Электроотрицательность, шкала Полинга  —  2.3
  • Электродный потенциал, В  —  W < W3+ 0,11 
  • W < W6+ 0,68
  • Степени окисления  —  6, 5, 4, 3, 2, 0
  • Энергия ионизации, кДж/моль(1-й ионизац. потенциал, эВ)  —  769,7 (7,98)

Термодинамические свойства простого вещества

  • Плотность, кг/м3 (при н. у., г/см3)  —  19300 (19,3)
  • Температура плавления, °C, K  —  3422, 3695
  • Температура кипения, °C, K  —  5555, 5828
  • Теплота плавления, кДж/кг, кДж/моль  —  191, 35
  • Теплота испарения, кДж/кг, кДж/моль  —  4482, 824
  • Теплоемкость, кДж/(кг·°С)  —  0,134
  • Молярная теплоемкость, Дж/(K·моль)  —  24,27
  • Молярный объем, см3/моль  —  9,53

Кристаллическая решетка простого вещества

  • Структура решетки  —  кубическая объемноцентрированая
  • Параметры решетки, A  —  3,160
  • Температура Дебая, K  —  310,00

Прочие характеристики

  • Теплопроводность, K, Вт/(м·К)  —  300, 173
  • Удельное электросопротивление при 20°С, ом·мм2/м  —  5,03
  • Коэффициент теплопроводности при 20°С, кал/ (см·сек·град)  —  0,4
  • Коэффициент линейного расширения, 1/град  —  43·10-6
  • Временное сопротивление при растяжении, кг/мм2  —  35

Источник: https://specmetal.ru/spravochnaya-informatsiya/svojstva-volframa

К группе металлов, отличающихся высокими показателями тугоплавкости, относится и вольфрам. Он был открыт в Швеции химиком по имени Шееле. Именно ему удалось первому в 1781 году из минерала вольфрамит выделить оксид неизвестного металла. Вольфрам в чистом виде ученому удалось получить по прошествии 3 лет.

Описание

Вольфрам относится к группе материалов, которые часто используются в различных отраслях промышленности. Он обозначается буквой W и в таблице Менделеева имеет порядковый номер 74.

Для него характерен светло-серый цвет. Одно из его характерных качеств — высокая тугоплавкость. Температура плавления вольфрама составляет 3380 градусов Цельсия.

Если рассматривать его с точки зрения применения, то самыми важными качествами этого материала являются:

  • плотность;
  • температура плавления;
  • электрическое сопротивление;
  • коэффициент линейного расширения.

Вычисляя его характерные качества, необходимо выделить высокую точку кипения, которая находится на уровне 5 900 градусов Цельсия. Еще одна его особенность — малая скорость испарения. Она невысока даже в температурных условиях 2000 градусов Цельсия. По такому свойству, как электропроводность этот металл в 3 раза превосходит такой распространенный сплав, как медь.

Факторы, ограничивающие применение вольфрама

Есть ряд факторов, которые ограничивают применение этого материала:

  • высокая плотность;
  • значительная склонность к ломкости в условиях низких температур;
  • малое сопротивление окислению.

По своему внешнему виду вольфрам имеет сходство с обычной сталью. Его основное применение связано главным образом с производством сплавов с высокими прочностными характеристиками.

Этот металл поддается обработке, но только если его предварительно нагреть. В зависимости от выбранного типа обработки нагрев производится до определенной температуры.

Например, если стоит задача выковать прутки из вольфрама, то заготовку необходимо предварительно нагреть до температуры 1450-1500 градусов Цельсия.

На протяжении 100 лет вольфрам не применялся в промышленных целях. Его использование при производстве различной техники сдерживалось его высокой температурой плавления.

Начало его промышленного применения связано с 1856 годом, когда он впервые стал использоваться для легирования инструментальных марок стали. При их производстве в состав стали добавлять вольфрам общей долей до 5%. Присутствие этого металла в составе стали позволило повысить скорость резки на токарных станках с 5 до 8 м в минуту.

Развитие промышленности во второй половине XIX века характеризуется активным развитием отрасли производства станков. Спрос на оборудование с каждым годом постоянно возрастал, что требовало от машиностроителей получения качественных характеристик машин, а помимо этого повышения их рабочей скорости. Первым импульсом в деле повышения скорости резки стало использование вольфрама.

Уже в начале XX века скорость резки была доведена до 35 метров в минуту. Добиться этого удалось за счет легирования стали не только вольфрамом, но и другими элементами:

  • молибденом;
  • хромом;
  • ванадием.

В дальнейшем скорость резания на станках возросла до 60 метров в минуту. Но, несмотря на такие высокие показатели, специалисты понимали, что есть возможность улучшить эту характеристику.

Какой способ выбрать для повышения скорости резания, специалисты долго не думали. Они прибегли к использованию вольфрама, но уже в виде карбидов в союзе с другими металлами и их видами.

В настоящее время вполне обычной является скорость резания металла на станках 2000 метров в минуту.

Свойства вольфрама

Как и у любого материала, у вольфрама имеются свои особые свойства, благодаря которым он попал в группу стратегических металлов. Выше мы уже сказали о том, что одним из достоинств этого металла является высокая тугоплавкость. Именно благодаря этому свойству материал можно использовать для изготовления нитей накаливания.

Температура плавления у него находится на уровне 2500 градусов Цельсия. Но только этим качеством положительные свойства этого материала не ограничиваются. Имеются у него и другие преимущества, о которых следует сказать. Одно из них — высокая прочность, демонстрируемая в условиях обычных и повышенных температур.

Источник: https://silix-rus.com/volfram-metall-ili-nemetall/

Применение вольфрама в промышленности и металлургии

Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

Вольфрам долгое время не находил практического применения. И только в конце XIX века замечательные свойства этого металла стали использоваться в промышленности. В настоящее время около 80 процентов добываемого вольфрама применяется в вольфрамовых сталях, около 15 процентов вольфрама используют для производства твердых сплавов.

Важной областью применения чистого вольфрама и чистых сплавов из него является электротехническая промышленность, где он используется при изготовлении нитей накаливания электрических ламп, для деталей радиоламп и рентгеновских трубок, автомобильного и тракторного электрооборудования, электродов для контактной, атомно-водородной и аргоно-дуговой сварки, нагревателей для электропечей и др. Соединения вольфрама нашли применение в производстве огнестойких, водоустойчивых и утяжеленных тканей, как катализаторы в химической промышленности. Ценность вольфрама особенно повышает его способность образовывать сплавы с различными металлами железом, никелем, хромом, кобальтом, молибденом, которые в различных количествах входят в состав стали. Вольфрам, добавленный в небольших количествах к стали, вступает в реакции с содержащимися в ней вредными примесями серы, фосфора, мышьяка и нейтрализует их отрицательное влияние. В результате сталь с добавкой вольфрама получает высокую твердость, тугоплавкость, упругость и устойчивость против кислот. Всем известно высокое качество клинков из дамасской стали, в которой содержится несколько процентов примеси вольфрама. Еще в. 1882 году вольфрам стали использовать при изготовлении пуль. В орудийной стали, бронебойных снарядах также содержится вольфрам. Сталь с присадкой вольфрама идет на изготовление прочных рессор автомобилей и железнодорожных вагонов, пружин и ответственных деталей различных механизмов. Рельсы, изготовленные из вольфрамовой стали, выдерживают намного большие нагрузки, и срок их службы значительно дольше, чем рельсов из обычных сортов стали. Замечательным свойством стали с добавкой 918 процентов вольфрама является ее способность к самозакаливанию, то есть при увеличении нагрузок и температуры эта сталь становится еще прочнее. Это свойство явилось основанием для изготовления целой серии инструментов из так называемой «быстрорежущей инструментальной стали». Применение резцов из нее позволило в свое время в несколько раз увеличить скорость обработки деталей на металлорежущих станках. И все же инструменты, изготовленные из быстрорежущей стали, по скорости резания в 35 раз уступают инструментам из твердых сплавов. К их числу относятся соединения вольфрама с углеродом (карбиды) и бором (бориды). Эти сплавы по твердости близки к алмазам. Если условная твердость самого твердого из всех веществ алмаза выражается 10 баллами, то твердость вольфрамо-карбида (вокара) 9,8. К числу этих сплавов относится и широко известный победит сплав углерода с вольфрамом и добавкой кобальта. Сам победит вышел из употребления, но это название сохранилось применительно к целой группе твердых сплавов. В машиностроительной промышленности из твердых сплавов изготавливают также штампы для кузнечных прессов. Они изнашиваются примерно в тысячу раз медленнее стальных. Особенно важной и интересной областью применения вольфрама является изготовление элементов накала (нитей) электрических ламп накаливания. Для изготовления нитей электроламп используют чистый вольфрам. Свет, излучаемый раскаленной нитью вольфрама, близок к дневному. А количество света, излучаемое лампой с вольфрамовой нитью, в несколько раз превышает излучение ламп из нитей, изготовленных из других металлов (осьмия, тантала). Световое излучение (световая отдача) электроламп с вольфрамовой нитью в 10 раз выше, чем у ранее применявшихся ламп с угольной нитью. Яркость свечения, долговечность, экономичность в потреблении электроэнергии, небольшие затраты металла и простота изготовления электрических ламп с вольфрамовой нитью обеспечили им самое широкое применение при освещении.

  Широкие возможности применения вольфрама обнаружились в результате открытия, сделанного известным американским физиком Робертом Уилъямсом Вудом. В одном из опытов Р. Вуд обратил внимание на то, что свечение вольфрамовой нити с торцовой части катодной трубки его конструкции продолжается и после отключения электродов от аккумулятора. Это настолько поразило его современников, что Р. Вуда стали называть чародеем. Исследования показали, что вокруг нагретой вольфрамовой нити происходит термическая диссоциация молекул водорода они распадаются на отдельные атомы. После отключения энергии атомы водорода снова соединяются в молекулы, и при этом выделяется большое количество тепловой энергии, достаточное, чтобы раскалить тонкую вольфрамовую нить и вызвать ее свечение. На этом эффекте разработан новый вид сварки металлов атомно-водородный, давший возможность сваривать различные стали, алюминий, медь, латунь в тонких, листах с получением чистого и ровного шва. Металлический вольфрам при этом используется в качестве электродов. Вольфрамовые электроды применяются также и при более широко распространенной аргонодуговой сварке. В химической промышленности вольфрамовая проволока, очень стойкая против кислот и щелочей, применяется для изготовления сеток различных фильтров. Вольфрам нашел применение также как катализатор с его помощью изменяют скорость химических реакций в технологическом процессе. Группа вольфрамовых соединении в промышленности и лабораторных условиях используется как реактивы для определения белка и других органических и неорганических соединений.

Вольфрамовые соединения используются и в полиграфической промышленности в качестве красок (шафрановая, вольфрамовая синь, вольфрамовая желть). Пиротехники добавляют соединения вольфрама в состав горючих смесей и получают разноцветные огни ракет и фейерверков. В свето-печатании используется бумага, обработанная вольфрамитом натрия. В текстильной промышленности солью вольфрамовой кислоты вольфраматом натрия протравливают ткани при крашении. Такие ткани непромокаемы и не боятся огня. Дерево тоже становится огнестойким, если его обработать этим веществом.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Коэффициент температурного расширения вольфрама близок к таковому у кремния, поэтому на вольфрамовые подложки припаивают кремниевые кристаллы мощных транзисторов – чтобы избежать растрескивания этих кристаллов при нагреве. Даже неполный перечень применения вольфрама и его соединений в промышленности дает представление о высокой ценности этого элемента.

Сейчас трудно представить, как бы любой из нас смог обходиться даже в повседневной жизни без вольфрама. И конечно, возможности ого использования будут раскрываться и дальше. Почти вся мировая вольфрамовая промышленность в период первой мировой войны была сосредоточена в Германии. Но сырье для нее вольфрамовые концентраты поставлялись из других стран.

Поэтому, изолированные от поставщиков сырья, немцы вынуждены были перерабатывать шлаки, скопившиеся около оловянных плавилен (вспомним «волчью пену»!) и получали из них около 100 тонн вольфрама в год.

В это же время потребности военной промышленности в вольфраме вызвали «вольфрамовую лихорадку» во многих странах.

В России поставщиками вольфрамовых руд стали Урал и Забайкалье. Стараясь нажиться па «вольфрамовой лихорадке», предприниматели не очень считались с интересами государства. Так, промышленник Толмачев, владевший Забайкальскими месторождениями Букука и Оланду, решил сдать их в аренду шведской фирме.

И только своевременное вмешательство Геологического комитета предотвратило это. В условиях военного времени рудники у этого дельца были реквизированы.

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W применяется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Перед началом первой мировой войны в 1913 году в мире было произведено 8 123 тонны вольфрамового концентрата (с содержанием 60 процентов трехокиси вольфрама). Перед второй мировой войной его производство быстро увеличилось и в 1940 году составило 44 013 тонн (без Советского Союза). По данным Горного бюро США, в 1972 году мировое производство вольфрама составило около 38 400 тонн.

Применение вольфрамовых сплавов

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью.

Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек.

Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок.

Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Источник: http://www.protown.ru/information/hide/5556.html

Вольфрам: свойства и марки, области применения и производство тугоплавкого вольфрама, продукция

Применение вольфрама в промышленности и металлургии. Вольфрам: свойства и марки, области применения, продукция из металла

Вольфрам является тугоплавким металлом. У него есть свои разновидности марок, каждая из которых имеет особенности.

Этот элемент в периодической таблице Менделеева находится под 74 номером и имеет светло-серый цвет. Его температура плавления составляет 3380 градусов.

Основными его свойствами являются коэффициент линейного расширения, электрическое сопротивление, температура плавления и плотность.

Вольфрам имеет свои механические и физические свойства, а также несколько разновидностей марок.

К физическим свойствам относят:

  • Коэффициент термического линейного расширения — 4,32*10 (-6) м/мК.
  • Сопротивление электрическое — 5,5 мкОм*см.
  • Теплопроводность — 129 Вт/(м*К).
  • Теплоёмкость удельная — 0,147 Дж/(г*К).
  • Температура кипения — 5900 градусов.
  • Температура плавления — 3380 градусов.
  • Плотность — 19,3 г/см3.
  • Атомный диаметр — 0,274 нм.
  • Атомная масса — 183,84 г/моль.
  • Атомный номер — 74.

Механические свойства:

  • Относительное удлинение — 0%.
  • Временное сопротивление — 800−1100 МПа.
  • Коэффициент Пуассона 0,29.
  • Модуль сдвига — 151,0 ГПа.
  • Модуль упругости — 415,0 ГПа.

Отличается этот металл маленькой скоростью испарения даже при 2 тыс. градусов и очень большой точкой кипения — 5900 градусов.

Свойствами, которые ограничивают область использования этого материала, являются малое сопротивление окислению, высокая склонность к ломкости и высокая плотность. На вид он напоминает сталь. Используется для того, чтобы изготавливать сплавы высокой прочности.

Обработать его можно только после нагревания. Температура нагрева зависит от того, какой именно метод обработки вы собираетесь проводить.

Вольфрам имеет такие марки:

  1. МВ — сплав вольфрама и молибдена. Повышается прочность молибдена при сохранении пластичности после обжига.
  2. ВРН — вольфрам без присадки. В нём допустимо повышенное содержание примесей.
  3. ВР — сплав рения и вольфрама.
  4. ВЛ, ВИ, ВТ — вольфрам с присадкой окиси лантана, иттрия и тория соответственно. Повышают эмиссионные свойства вольфрама.
  5. ВМ — вольфрам с ториевой и кремнещелочной присадками. Повышает температуру рекристаллизации и прочность при высоких температурах.
  6. ВА — вольфрам с алюминиевой и кремнещелочной присадками. Увеличивает температуру первичной рекристаллизации, формоустойчивость при больших температурах, а также прочность после отжига.
  7. ВЧ — чистый без присадок.

Область применения

Из-за своих уникальных свойств вольфрам получил широкое применение. В промышленности он применяется в чистом виде и в сплавах.

Основными областями применения являются:

  • Стали специальные. При производстве быстрорежущих сталей и для инструментальных сталей этот материал применяется в качестве легирующего элемента или же основного компонента. Из таких сталей производят штампы, пуансоны, фрезы, свёрла и прочие. Буква «Р» в названии сплава означает, что это быстрорежущая сталь, а буквы «К» или «М» — сталь легированная кобальтом или молибденом. Вольфрам ещё входит в состав сталей магнитных, которые подразделяются на вольфрам кобальтовые и вольфрамовые.
  • Сплавы твёрдые на основе карбида вольфрама. Это соединение углерода и вольфрама. Он тугоплавкий, износостойкий и имеет высокую твёрдость. Из него изготавливают рабочие части буровых и режущих инструментов.
  • Износостойкие и жаропрочные сплавы. В них использована тугоплавкость вольфрама. Наиболее распространёнными являются хромовые и кобальтовые соединения — стеллиты. Обычно их при помощи наплавки наносят на сильно изнашивающиеся машинные детали.
  • Тяжёлые и контактные соединения. К ним относят сплавы вольфрама с серебром и медью. Это довольно эффективные контактные материалы для производства рабочих частей выключателей, рубильников, электродов для точечной сварки и прочих оборудований.
  • Электроосветительная и электровакуумная техника. Вольфрам в виде разных кованых деталей, ленты или проволоки используют в производстве рентгенотехники, радиоэлектроники и электроламп. Это лучший материал для спиралей и нитей накаливания. Вольфрамовые прутки и проволоки служат для высокотемпературных печей электронагревателями. Эти электронагреватели могут работать в атмосфере инертного газа, водорода или вакуума.
  • Сварочные электроды. Сварка является важной сферой для применения этого металла. Из него делают электроды для сварки дуговой, так как они неплавкие.

Этот материал относят к редким металлам. Для него характерны сравнительно небольшие объёмы потребления и производства, а также в земной коре малая распространённость. Никакой из редких металлов не получают восстановлением из сырья. Изначально оно перерабатывается в соединение химическое. А ещё любая редкометаллическая руда перед переработкой подвергается дополнительному обогащению.

Выделяют три главные стадии для получения редкого металла:

  1. Разложение руды. Извлекаемый металл отделяется от основной массы перерабатываемого сырья. Он концентрируется в осадке или растворе.
  2. Получение химического чистого соединения. Его выделение и очистка.
  3. Из полученного соединения выделяют металл. Так получают чистые материалы без примесей.

В процессе получения вольфрама тоже есть несколько стадий. Исходное сырьё — шеелит и вольфрамит. Обычно в их составе содержится от 0,2 до 2% вольфрама.

  1. Обогащение руды производится при помощи электростатической или магнитной сепарации, флотации, гравитации. В итоге получают концентрат вольфрамовый, который содержит примерно 55−65% ангидрида вольфрама. Контролируется в них и наличие примесей: висмута, сурьмы, меди, олова, мышьяка, серы, фосфора.
  2. Получение вольфрамового ангидрида. Он является сырьём для изготовления вольфрама металлического или же его карбида. Для этого проводится ряд процедур, таких как: выщелачивание спёка и сплава, разложение концентратов, получение вольфрамовой технической кислоты и прочие. В результате этих действий должен получиться продукт, который будет содержать в себе 99,9% трехокиси вольфрама.
  3. Получение порошка. В виде порошка чистый металл может быть получен из ангидрида. Для этого проводится восстановление углеродом или водородом. Углеродное восстановление проводится реже, потому что ангидрид насыщается карбидами и это приводит к хрупкости металла и ухудшению обработки. При получении порошка применяют специальные методы, которые позволяют контролировать форму и размер зёрен, гранулометрический и химический составы.
  4. Получение вольфрама компактного. В основном он в виде слитков или штабиков является заготовкой для изготовления полуфабрикатов: ленты, прутков, проволоки и прочих.

Вольфрамовая продукция

Из вольфрама изготавливают многие необходимые для хозяйства предметы, такие как проволока, прутки и прочие.

Прутки

Одной из наиболее распространённой продукцией из этого тугоплавкого материала являются вольфрамовые прутки. Исходным материалом для его изготовления является штабик.

Чтобы из штабика получить пруток его подвергают ковке, используя ротационную ковочную машину.

Осуществляется ковка при нагревании, так как этот металл при комнатной температуре очень хрупкий. В ковке выделяют несколько этапов. На каждом последующем прутки получаются меньшего диаметра.

На первом этапе получаются прутки, которые будут иметь диаметр до 7 миллиметров, если штабик будет иметь длину от 10 до 15 сантиметров. Температура заготовки при ковке должна равняться 1450−1500 градусов.

Нагревающим материалом обычно является молибден. После второго этапа прутки будут составлять в диаметре до 4,5 миллиметров. Температура штабика при её производстве примерно 1250−1300 градусов.

На следующем этапе прутки будут иметь диаметр до 2,75 миллиметров.

Прутки марок ВЧ и ВА получают при более низких температурах, чем марок ВИ, ВЛ и ВТ.

Если заготовка была получена методом плавки, то горячая ковка не осуществляется. Связано это с тем, что такие слитки имеют крупнокристаллическую грубую структуру. При использовании горячей ковки могут появиться разрушения и трещины.

В этой ситуации вольфрамовые слитки подвергаются горячему двойному прессованию (приблизительная степень деформации 90%). Производится первое прессование при температурном режиме в 1800—1900 градусов, а второе — 1350−1500. После этого заготовки подвергаются горячей ковке для того, чтобы из них получить вольфрамовые прутки.

Эта продукция применяется во многих промышленных отраслях. Одна из наиболее распространённых — сварочные неплавящиеся электроды. Для них подойдут прутки, которые изготовлены из марок ВЛ, ВЛ и ВТ.

В качестве нагревателей применяются прутки, изготовленные из марок МВ, ВР и В. А. Они применяются в печах, температура которых может достигать 3 тыс. градусов в вакууме, атмосфере инертного газа или водорода.

Вольфрамовые прутки могут быть катодами газозарядных и электронных приборов, а также радиоламп.

Электроды

Одним из главных компонентов, которые необходимы для сварки, являются сварочные электроды. При сварке дуговой они используются наиболее широко. Относится она к термическому классу сварки, в котором за счёт термической энергии осуществляется плавление.

Автоматическая, полуавтоматическая или ручная дуговая сварка является самой распространённой. Вольтовой дугой создаётся тепловая энергия, которая находится между изделием и электродом. Дугой называют стабильный мощный электрический заряд в ионизированной атмосфере паров металла, газов.

Чтобы получить дугу, электрод к месту сварки проводит электрический ток.

Сварочным электродом называют проволочный стержень, на который нанесено покрытие (возможны варианты и без покрытия). Для сварки существует множество различных электродов.

Их отличительными чертами являются диаметр, длина, химический состав. Для сварки определённых сплавов или металлов применяются разные электроды.

Наиболее важным видом классификации является разделение электродов на неплавящиеся и плавящиеся.

Сварочные плавящиеся электроды во время сварки расплавляются, их металл вместе с металлом расплавленным свариваемой детали пополняют сварочную ванну. Выполняют такие электроды из меди и стали.

А вот электроды неплавящиеся в процессе сварки не расплавляются. К ним относят вольфрамовые и угольные электроды. При сварке необходимо подавать присадочный материал, который плавится и с расплавленным материалом свариваемого элемента образуют сварочную ванну.

Для этих целей в основном применяют сварочные прутки или проволоку. Электроды сварочные могут быть непокрытыми и покрытыми. Покрытие играет важную роль.

Его компоненты могут обеспечить получение металла швов определённых свойств и состава, защиту расплавленного металла от влияния воздуха и стабильное горение дуги.

Составляющие в покрытии могут быть раскисляющими, шлакообразующими, газообразующими, стабилизирующими или легирующими. Покрытие может быть целлюлозным, основным, рутиловым или кислым.

Вольфрамовые электроды используются для сварки металлов цветных, а также их сплавов, высоколегированных сталей. Хорошо вольфрамовый электрод подходит для образования сварного шва повышенной прочности, при этом детали могут иметь различный химический состав.

Вольфрамовая продукция очень качественная и нашла своё применение во многих отраслях, в некоторых она просто незаменима.

Источник: https://tokar.guru/metally/volfram/volfram-svoystva-i-marki-oblasti-primeneniya-produkciya-iz-metalla.html

Консультант Кузнецов
Добавить комментарий