Неорганические элементы клетки. Неорганические вещества и их роль в клетке

12. Химический состав клетки. Химические элементы и их биологическая роль. Неорганические вещества в клетке

Неорганические элементы клетки. Неорганические вещества и их роль в клетке

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро– и ультрамикроэлементы.

Макроэлементы составляют до 99 % массы клетки, из которых до 98 % приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.

Микроэлементы – преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001 % до 0,000001 %.

Ультрамикроэлементы. Их концентрация ниже 0,000001 %. К ним относят золото, ртуть, селен и др.

Химическое соединение – это вещество, в котором атомы одного или нескольких химических элементов соединены друг с другом посредством химических связей. Химические соединения бывают:

  • неорганическими,
  • органическими.

К неорганическим относят воду и минеральные соли.

Органические соединения – это соединения углерода с другими элементами. Основными органическими соединениями клетки являются белки, жиры, углеводы и нуклеиновые кислоты.

Белки – полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

Функции белков:

  • защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);
  • структурная (коллаген входит в состав тканей, участвует в образовании рубца);
  • двигательная (миозин участвует в сокращении мышц);
  • запасная (альбумины яйца);
  • транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);
  • рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);
  • регуляторная (регуляторные белки определяют активность генов);
  • белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);
  • белки-ферменты катализируют все химические реакции в организме;
  • энергетическая (при распаде 1 г белка выделяется 17 кдж энергии).

Углеводы – моно– и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1: 2: 1.

Функции углеводов:

  • энергетическая (при распаде 1 г углеводов выделяется 17,6 кдж энергии);
  • структурная (целлюлоза, входящая в состав клеточной стенки у растений);
  • запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

Функции липидов:

  • энергетическая (при распаде 1 г липидов образуется 38,9 кдж энергии);
  • структурная (фосфолипиды клеточных мембран, образующие липидный бислой);
  • запасающая (запас питательных веществ в подкожной клетчатке и других органах);
  • защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);
  • регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);
  • теплоизолирующая (подкожная клетчатка сохраняет тепло).

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью.

АТФ образуется в митохондриях в процессе фосфорилирования. При ее гидролизе высвобождается большое количество энергии.

АТФ является основным макроэргом клетки – аккумулятором энергии в виде энергии высокоэнергетических химических связей.

Минеральные соли. Неорганические вещества в клетке, кроме воды, представлены минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg2+, NH4+) и анионы (С1-, Н2Р04-, НР042-, НС03-, NO32–, SO42-) Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.

Ряд катионов и анионов необходим для синтеза важных органических веществ, например, фосфолипидов, АТФ, нуклеотидов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

Источник: //vseobiology.ru/obshchaya-biologiya/2041-12-khimicheskij-sostav-kletki-khimicheskie-elementy-i-ikh-biologicheskaya-rol-neorganicheskie-veshchestva-v-kletke

Неорганические вещества, их роль в клетке

Неорганические элементы клетки. Неорганические вещества и их роль в клетке

  1. Введение.
  2. Неорганические вещества и их роль в клетке.
  3. Доказательства их наличия и роли в растении.
  4. Заключение.
  5. Источники информации.

Введение 

Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой.

Клетка – это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Чтобы понять строение и жизнь растений, их потребности, а также оценить пользу, которую приносят растения в хозяйстве человека, нужно узнать, из каких веществ они состоят.

Неорганические вещества и их роль в клетке.

Вода – необходимое условие существования всего живого. Без воды организм погибает или впадает в состояние анабиоза. воды в растительных клетках  составляет 70-95% сырой массы. Роль воды многообразна.

Вода в биологических объектах выполняет следующие основные функции:

1. Водная среда объединяет все макро- и микросистемы  клетки и растения в целом.

2. Вода – растворитель и среда для биохимических  реакций.

3. Вода участвует в упорядочении структур в  клетках. Она входит в состав  белковых молекул, определяя их  строение.

4. Вода – метаболит и непосредственный компонент  биохимических процессов. Так,  при фотосинтезе вода является  донором электронов. При дыхании  вода принимает участие в окислительных  процессах.

5. Вода – это главный  транспортный компонент.

6. Вода является терморегулирующим фактором.

7. Благодаря осмосу, вода обеспечивает напряженное  состояние (тургор) растительных  клеток и тканей.

В ходе эволюции растительных организмов прогрессировалась и роль воды. Так, для водорослей вода – это среда обитания. Наземные споровые растения

еще сохраняют зависимость  от жидкой воды в период размножения  с

участием гамет, передвигающихся  с помощью жгутиков.

Семенные растения, у которых появляется пыльца, уже  не нуждаются в свободной воде для полового процесса. У них совершенствуются механизмы поступления и экономного расходования воды, необходимой для  жизнедеятельности растительного  организма.

Минеральные соли. Минеральные соли относятся к обязательным компонентам пищи, и отсутствие их приводит к гибели организма. Минеральные вещества активно участвуют в жизнедеятельности организма, в нормализации функций важнейших его систем. Известна их роль в формировании и регенерации тканей организма.

3

По содержанию элементы, входящие в состав клетки можно разделить на две группы.

 
1.Макроэлементы.  макроэлементов составляет около 98 % массы клетки. Особенно высока концентрация водорода, кислорода, углерода и азота(98% всех макроэлементов). 
Так же к макроэлементам относят: калий, магний, натрий.

2.Микроэлементы. К ним относят преимущественно атомы металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ, такие как: бор, кобальт, цинк, ванадий, йод, бром, фтор. 
В клетке химические элементы находятся в виде ионов либо в составе соединений.

Например: углерод, водород и кислород входят в состав углеводов и жиров.

В белках к ним добавляются азот и сера, в нуклеиновых кислотах – азот и фосфор; железо участвует в построении молекулы гемоглобина, магний находится в молекулах хлорофилла, йод в молекулах тироксина (гормон, щитовидки), натрий и калий – в цитоплазме и межклеточной жидкости, цинк входит в молекулу инсулина.

4

 Доказательства наличия неорганических веществ и роли в растении.

       Для доказательства придется еще раз вернуться к функциям воды:

1. Вода – универсальный растворитель для полярных веществ, например солей, Вещества, хорошо растворимые в воде, называются гидрофильными. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.

2. Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу.

3. Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии.

4. Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.

5. Для воды характерно исключительно высокое поверхностное натяжение. Многим мелким организмам поверхностное натяжение позволяет       удерживаться на воде или скользить по ее поверхности.

5

6. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

7. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

8. Вода — составная часть смазывающих жидкостей и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез и др.

Т.е. без воды всё вышеперечисленное было бы невозможным.

6

Заключение.

Вода и минеральные соли – неорганические вещества необходимые для жизнедеятельности клетки растения, и всех организмов.

7

Источники информации:

  1. Общая биология: Учебник для студенческих образовательных учреждений среднего профессионального образования / В.М. Константинов, А.Г. Рязанов, Е.О. Фадеева; Под редакцией В.М. Константинова. – М.: Издательский центр «Академия»,  2003. – 256с.
  2. //rastenia.siteedit.ru/

8

Источник: //www.myunivercity.ru/%D0%91%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F/%D0%9D%D0%B5%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B0_%D0%B8%D1%85_%D1%80%D0%BE%D0%BB%D1%8C_%D0%B2_%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B5/230608_2516653_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B01.html

2.3 Химический состав клетки. Макро- и микроэлементы

Неорганические элементы клетки. Неорганические вещества и их роль в клетке

урок 1: Химический состав клетки. Макро и микроэлементы. Роль химических веществ


урок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

Химический состав клетки

Обнаружено, что в клетках живых организмов постоянно содержатся в виде нерастворимых соединений и ионов около 80 химических элементов. Все они подразделяются на 2 большие группы по своей концентрации:

  • макроэлементы, содержание которых не ниже 0,01%;
  • микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Макроэлементы:

  • Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.
  • Азот, кислород, водород, углерод. Это основные компоненты клетки.
  • Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.
  • Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.
  • Магний – компонент хлорофилла. Участвует в синтезе белков.
  • Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

  • Цинк – компонент инсулина;
  • Медь – участвует в фотосинтезе и дыхании;
  • Кобальт – компонент витамина В12;
  • Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;
  • Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.

Неорганические вещества клетки

Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

  • терморегуляции;
  • капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

  • переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;
  • формировании нервных импульсов, имеющих электрохимическую природу;
  • сокращении мышц;
  • свертывании крови;
  • входят в состав белков;
  • фосфат-ион – компонент нуклеиновых кислот и АТФ;
  • карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры. 

Основные классы, имеющиеся в живых организмах:

Углеводы. В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

  • Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.
  • Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.
  • Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.
  • Сахароза (дисахарид) – источник энергии, образуется в растениях.
  • Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.

Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям).

Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м.

Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон.

Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липиднуюструктуру. Жиры входят в основу структуры мембран.


Белки или протеины 
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи.

Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи.

В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

  • первичная структура – аминокислотная цепочка;
  • вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;
  • третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;
  • четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры. 

Белки выполняют в клетке множество функций:

  • ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;
  • защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.
  • структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;
  • регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы –нуклеотиды, имеющие принципиально общую структуру из:

  • фосфат-группы;
  • дезоксирибозы;
  • азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

  • вместо тиминового нуклеотида – урациловый;
  • рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

  • 3 остатка фосфорной кислоты;
  • аденин;
  • рибозу.

В результате каскадных химических процессов дыхания синтезируется в митохондриях. Основная функция – энергетическая, одна химическая связь в ней содержит почти столько же энергии, сколько получается при окислении 1 г жира.

Предыдущий урокСледующий урок

Источник: //cknow.ru/knowbase/168-23-himicheskiy-sostav-kletki-makro-i-mikroelementy.html

Химическая организация клетки. Неорганические вещества. Органические вещества

Неорганические элементы клетки. Неорганические вещества и их роль в клетке

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы — кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,— калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,— микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.

Неорганические вещества

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках — до 95%, в старых — 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе.

Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде.

Такие вещества называют гидрофильными (от греч. «гидро» — вода, «филее» — люблю). Это многие минеральные соли, белки, углеводы и др.

Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» — страх) — жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К+, Na+, Са2+, Mg+. Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова.

В живой клетке концентрация К высокая, Na+ — низкая, а в плазме крови, наоборот, высокая концентрация Na+ и низкая К+. Это обусловлено избирательной проницаемостью мембран.

Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений.

Недостаток отдельных элементов — Fe, Р, Mg, Со, Zn — блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО42-, Н2РO4—, Cl —, HCO3—

Органические вещества

Органические вещества в комплексе образуют около 20—30% состава клетки.

Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые — моносахариды (от греч. «монос» — один) и сложные — полисахариды (от греч. «поли» — много).

Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода.

Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке).

Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов.

Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза).

Последняя состоит из 150—200 молекул глюкозы.

Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).

Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке.

При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества.

Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой.

Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии.

Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки — наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров — 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (— NH2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами.

Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера — белка.

При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура — полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S — S (эс — эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией. Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов.

При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде первичной структуры — полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна

Белки — это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов — ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок — активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.).

Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки — антитела — выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» — ядро) впервые обнаружены в ядре. Они бывают двух типов — дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей.

Ширина двойной спирали 2 нм1, длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы).

ДНК — полимер, мономерами которой являются нуклеотиды — соединения, состоящие из молекулы фосфорной кислоты, углевода — дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г — только Ц.

Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» — дополнение) друг другу.

Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц — три.

Удвоение молекулы ДНК — ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом.

Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь.

В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК — полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК — аденин, гуанин и цитозин — соответствуют таковым ДНК, а четвертое — иное. Вместо тимина в РНК присутствует урацил.

Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов.

Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ — аденозинтрифосфорная кислота — важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод — рибоза и три молекулы фосфорной кислоты. АТФ — неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в АДФ (аденозин-дифосфорную кислоту).

Эта реакция сопровождается выделением 40 кДж энергии, поэтому фосфорнокислородную связь называют макроэнергетической связью и обозначают знаком [бесконечность]. В АТФ имеются две такие связи. Если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорную кислоту).

АТФ играет центральную роль в превращении энергии в клетке.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: //kaz-ekzams.ru/biologiya/uchebnaya-literatura-po-biologii/biologiya-spravochnye-materialy/obshhaya-biologiya/690-ximicheskaya-organizaciya-kletki-neorganicheskie-veshhestva-organicheskie-veshhestva.html

Неорганические соединения клетки

Неорганические элементы клетки. Неорганические вещества и их роль в клетке

Химический состав клетки

Химические элементы клетки.

Все клетки, независимо от уровня организации, сходны по химическому составу. В клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях.

В живых организмах обнаружено около 80 химических элементов периодической системы Д.И.Менделеева. Для 24 элементов известны функции, которые они выполняют в организме, это биогенные элементы.

По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы :

O, C, H, N — около 98% от массы живого вещества, элементы 1-ой группы;

K, Na, Ca, Mg, S, P, Cl, Fe — элементы 2-ой группы. (1,9% массы живого вещества).

Микроэлементы ( Zn, Mn, Cu, Co, Mo и многие другие), доля которых составляет от 0,001% до 0,000001. Микроэлементы входят в состав биологически активных веществ — ферментов, витаминов и гормонов.

Ультрамикроэлементы (Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

Неорганические соединения клетки.

К неорганическим веществам относятся: вода, составляющая примерно 70-80% массы организма; минеральные вещества — 1-1,5%.

Вода. Самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша — более 90%.

Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах.

Химические и физические свойства воды объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет небольшой отрицательный заряд, а два водородных — небольшие положительные заряды.

Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они в 15—20 раз слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды.

Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью. Вода практически не сжимается, прозрачна в видимом участке спектра.

Наконец, вода —вещество, плотность которого в жидком состоянии больше, чем в твердом, при 4ºС у нее максимальная плотность, у льда плотность меньше, он поднимается на поверхность и защищает водоем от промерзания.

Физические и химические свойства делают ее уникальной жидкостью и определяют ее биологическое значение. Вода — хороший растворитель ионных (полярных), а также некоторых не ионных соединений, в молекуле которых присутствуют заряженные (полярные) группы.

Любые полярные соединения в воде гидратируются (окружаются молекулами воды), при этом молекулы воды участвуют в образовании структуры молекул органических веществ. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то вещество растворяется.

По отношению к воде различают: гидрофильные вещества — вещества, хорошо растворимые в воде; гидрофобные вещества — вещества, практически нерастворимые в воде. Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе.

Большая теплоемкость и теплопроводность воды способствуют равномерному распределению тепла в клетке.

Благодаря большой потери тепла при испарении воды, происходит охлаждение организма. Благодаря силам адгезии и когезии, вода способна подниматься по капиллярам (один из факторов, обеспечивающих движение воды в сосудах растений).

Вода является непосредственным участником многих химических реакций (гидролитическое расщепление белков, углеводов, жиров и др.).

Определяет напряженное состояние клеточных стенок (тургор), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

Минеральные вещества клетки. В основном представлены солями, которые диссоциируют на анионы и катионы. Для процессов жизнедеятельности клетки наиболее важны катионы К+, Na+, Ca2+, Mg2+, анионы HPO42-, Cl-, HCO3-.

Концентрации ионов в клетке и окружающей ее среде различны. Например, во внешней среде (плазме крови, морской воде) K+ всегда меньше, а Na+ всегда больше, чем в клетке.

Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К+, Na+, Cl- обеспечивают возбудимость живых организмов; катионы Mg2+, Mn2+, Zn2+, Ca2+ и др.

необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg2+ (составная часть хлорофилла); буферные свойства клетки (поддержание слабощелочной реакции содержимого клетки) поддерживается анионами слабых кислот (НСО3-, НРО4-) и слабыми кислотами (Н2СО3);

Фосфатная буферная система:

Низкий pH Высокий pH

НРО42- + Н+ ←―――――――→H2PO4-

Гидрофосфат — ион Дигидрофосфат — ион

Бикарбонатная буферная система:

Низкий pH Высокий pH

НСО3- + Н+ ←―――――――→ H2СO3

Гидрокарбонат — ион Угольная кислота

Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/17_138165_oborudovanie.html

Консультант Кузнецов
Добавить комментарий