Минеральные вещества и их роль в жизнедеятельности клетки. Минеральные вещества и их роль в клетке

16 . Минеральные вещества в клетках, их роль назначение. Осмотические процессы в растительных и животных клетках

Минеральные вещества и их роль в жизнедеятельности клетки. Минеральные вещества и их роль в клетке

Минеральныевещества –это один из важнейших компонентов нашегопитания, без них невозможно правильноепротекание жизненно важных процессовв организме, они обеспечивают правильноеформирование химической структуры всехтканей человека и, разумеется, мышечной,в том числе.Все минеральныевещества,присутствующие в нашем организме, можноусловно разделить на макроэлементы имикроэлементы.

Макроэлементы –минеральные вещества, содержащиеся ворганизме в, относительно, большихколичествах, это: железо, кальций, натрий,фосфор, магний, калий, сера, хлор.

Микроэлементы –минеральные вещества, содержащиеся ворганизме в, относительно, малыхколичествах, это: цинк, марганец, медь,фтор, хром, никель, кобальт и другие.

ВеществаМестонахождение и преобразованиеСвойства
Соединения азотаВ клетках растений ионы аммония и нитратов восстанавливаются и включаются в синтез аминокислот. У животных аминокислоты идут на построение собственных белков. При отмирании организмов включаются в круговорот веществ в форме свободного азота.Входят в состав белков, аминокислот, нуклеиновых кислот (ДНК, РНК) и АТФ
Соединения фосфораСоли фтора(фосфаты)находясь в почве, растворяются корневыми выделениями растений и усваиваются. Остатки фосфорной кислоты при отмирании организмов минерализуются, образуя соли.Входят в состав всех мембранных структур; нуклеиновых кислот, ДНК, РНК, АТФ, ферментов тканей (костной)
Соединения калияКалий содержится во всех клетках в виде ионов калия, концентрация которых намного выше, чем в окружающей среде. После отмирания возвращается в окружающую среду в виде ионов калия.“Калиевый насос” клетки способствует проникновению через мембрану. Активизирует жизнедеятельность клетки, проведение возбуждения и импульсов.
Соединения кальцияКальций содержится в клетках в виде ионов и кристаллов солей.Образует межклеточное вещество и кристаллы в клетках растений. Входит в состав костей, раковин, известковых скелетов

Жизнедеятельностьклетки характеризуется непрерывнопротекающими в ней процессами обменавеществ, причем цитоплазма избирательнореагирует на воздействие разных фактороввнешней среды. В поглощении и выделениивеществ большую роль играют процессыдиффузии и осмоса.

Избирательностьтранспорта через проницаемую мембрануведет к возникновению в клетке осмотическихявлений. Осмотическиминазывают явления, происходящие в системе,состоящей из двух растворов, разделенныхполупроницаемой мембраной.

В растительнойклетке роль полупроницаемых пленоквыполняют: плазмалемма — мембрана,разделяющая цитоплазму и внеклеточнуюсреду, и тонопласт — мембрана, разделяющаяцитоплазму и клеточный сок, представляющийсобой содержимое вакуоли.

Осмос— диффузияводы через полупроницаемую мембрануиз раствора с низкой концентрациейрастворенного вещества в раствор свысокой концентрацией растворенноговещества.

Давление,при котором диффузия жидкости прекращается,называется осмотическимдавлением.

Если осмотическое давление растворабольше, чем давление исследуемой жидкости, раствор называют гипертоническим;если меньше — гипотоническим,если такое же — изотоническим.

Тургоррастительной клетки. Еслипоместить взрослые клетки растений (всоставе ткани, к примеру, эпидермиса) вгипотонические условия, они не лопнут,поскольку каждая клетка растенияокружена более или менее толстойклеточной стенкой. Она служит ригиднойструктурой, не позволяющей притекающейводе разорвать клетку.

Если бы клеточнаястенка и плазматическая мембрана клеткимогли растягиваться, вода входила бы вклетку до тех пор, пока концентрацияосмотически активных веществ снаружии внутри клетки не выровнялась бы.

Вреальности клеточная стенка — прочнаянерастяжимая структура, и в гипотоническихусловиях входящая в клетку вода давитна клеточную стенку, плотно прижимая кней плазмалемму. Давление протопластаизнутри на клеточную стенку называетсятургорнымдавлением.Клетки растений обладают тургесцентностью.

Тургорное давление препятствуетдальнейшему поступлению воды в клетку.Состояние внутреннего напряженияклетки, обусловленное высоким содержаниемводы и развивающимся давлением содержимогоклетки на ее оболочку называется тургор.

Источник: https://studfile.net/preview/4081346/page:11/

Минеральные вещества и их роль в жизнедеятельности клетки. урок. Биология 10 Класс

Минеральные вещества и их роль в жизнедеятельности клетки. Минеральные вещества и их роль в клетке

Тема: Основы цитологии

Урок: Минеральные вещества и их роль в жизнедеятельности клетки

Минеральные вещества составляют от 1 до 1,5% от сырой массы клетки, и находятся в клетке в виде солей диссоциированных на ионы, либо в твердом состоянии (рис. 1).

Рис. 1. Химический состав клеток живых организмов

В цитоплазме любой клетки находятся кристаллические включения, которые представлены слаборастворимыми солями кальция и фосфора; кроме них могут находиться оксид кремния и другие неорганические соединения, которые участвуют в образовании опорных структур клетки – в случае минерального скелета радиолярий – и организма, то есть образуют минеральное вещество костной ткани.

Неорганические ионы, имеющие значение для жизнедеятельности клетки (рис. 2).

Рис. 2. Формулы основных ионов клетки

Катионы – калий, натрий, магний и кальций.

Анионы – хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20–30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде.

Благодаря существованию градиентов концентрации, осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки.

Анионы слабых кислот – гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) – участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды. По своей реакции растворы могут быть кислыми, нейтральными и основными.

Кислотность или основность раствора определяется концентрацией в нем ионов водорода (рис. 3).

Рис. 3. Определение кислотности раствора при помощи универсального индикатора

Эту концентрацию выражают с помощью водородного показателя pH, протяженность шкалы от 0 до 14. Нейтральная среда pH – около 7. Кислая – меньше 7. Основная – больше 7. Быстро определить pH среды можно с помощью индикаторных бумажек, или полосок (см. видео).

Мы опускаем индикаторную бумажку в раствор, затем полоску вынимаем и сразу же сравниваем окрашивание индикаторной зоны полоски с цветами стандартной шкалы сравнения, которая входит в комплект, оценивая схожесть окрашивания и определяя значение pH (см. видео).

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют (Источник).

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью.

Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора. Когда кислотность снижается, то усиливается тенденция к освобождению протонов.

Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов (см. видео).

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин – это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки.

Значение ионов натрия и калия

Ионы натрия и калия распределены по всему объему организма, при этом ионы натрия входят, в основном, в состав межклеточной жидкости, а ионы калия содержатся внутри клеток: 95% ионов калия содержатся внутри клеток, а 95% ионов натрия содержатся в межклеточных жидкостях (рис. 4).

Рис. 4.

С ионами натрия связано осмотическое давление жидкостей, удержание воды тканями, а также перенос, или транспорт таких веществ как аминокислоты и сахара через мембрану.

Значение кальция в организме человека

Кальций является одним из самых распространенных элементов в организме человека. Основная масса кальция входит в состав костей и зубов. Фракция внекостного кальция составляет 1% от общего количества кальция в организме. Внекостный кальций влияет на свертываемость крови, а также нервно-мышечную возбудимость и сокращение мышечных волокон.

Фосфатная буферная система

Фосфатная буферная система играет роль в поддержании кислотно-щелочного баланса организма, кроме этого она поддерживает баланс в просвете канальцев почек, а также внутриклеточной жидкости.

Фосфатная буферная система состоит из дигидрофосфата и гидрофосфата. Гидрофосфат связывает, то есть нейтрализует протон. Дигидрофосфат высвобождает протон и взаимодействует с поступившими в кровь щелочными продуктами.

Фосфатная буферная система входит в буферную систему крови (Рис. 5).

Рис. 5.

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления – смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются буферные системы, которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

– карбонатная буферная система,

– фосфатная буферная система,

– буферная система гемоглобина,

– буферная система белков плазмы (Рис. 6).

Взаимодействие этих буферных систем создает определенное постоянное pH крови.

Рис. 6.

Таким образом, сегодня мы с вами рассмотрели минеральные вещества и их роль в жизнедеятельности клетки.

Домашнее задание

Какие химические вещества называют минеральными? Каково значение минеральных веществ для живых организмов? Из каких веществ в основном состоят живые организмы? Какие катионы входят в состав живых организмов? Каковы их функции? Какие анионы входят в состав живых организмов? Какова их роль? Что такое буферная система? Какие буферные системы крови вам известны? С чем связано содержание минеральных веществ в организме?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Химический состав живых организмов (Источник).

2. Википедия (Источник).

3. Биология и медицина (Источник).

4. Образовательный центр (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/mineralnye-veschestva-i-ih-rol-v-zhiznedeyatelnosti-kletki

Минеральные вещества клетки и их значение. Роль минеральных веществ в клетке

Минеральные вещества и их роль в жизнедеятельности клетки. Минеральные вещества и их роль в клетке

Клетка – это не только структурная единица всего живого, своеобразный кирпичик жизни, но и маленькая биохимическая фабрика, на которой каждую долю секунды происходят различные превращения и реакции.

Так формируются необходимые для жизни и роста организма структурные компоненты: минеральные вещества клетки, вода и органические соединения. Поэтому очень важно знать, что будет, если какого-то из них не хватит.

Какую роль играют различные соединения в жизни этих крошечных, не видимых невооруженным глазом, структурных частичек живых систем? Постараемся разобраться в этом вопросе.

Классификация веществ клетки

Все соединения, составляющие массу клетки, формирующие ее структурные части и отвечающие за ее развитие, питание, дыхание, пластический и энергетический обмен, нормальное развитие, можно разделить на три большие группы. Это такие категории, как:

  • органические;
  • неорганические вещества клетки (минеральные соли);
  • вода.

Часто последнюю относят ко второй группе неорганических компонентов. Кроме этих категорий, можно обозначить те, которые складываются из их сочетания. Это металлы, входящие в состав молекулы органических соединений (например, молекула гемоглобина, содержащая ион железа, является белковой по своей природе).

Если говорить конкретно о минеральных или неорганических соединениях, входящих в состав каждого живого организма, то они также неодинаковы и по природе, и по количественному содержанию. Поэтому имеют свою классификацию.

Все неорганические соединения можно разделить на три группы.

  1. Макроэлементы. Те, содержание которых внутри клетки больше 0,02% от общей массы неорганических веществ. Примеры: углерод, кислород, водород, азот, магний, кальций, калий, хлор, сера, фосфор, натрий.
  2. Микроэлементы – меньше 0,02%. К ним относятся: цинк, медь, хром, селен, кобальт, марганец, фтор, никель, ванадий, йод, германий.
  3. Ультрамикроэлементы – содержание меньше 0,0000001%. Примеры: золото, цезий, платина, серебро, ртуть и некоторые другие.

Также можно особенно выделить несколько элементов, которые являются органогенными, то есть составляют основу органических соединений, из которых построено тело живого организма. Это такие элементы, как:

  • водород;
  • азот;
  • углерод;
  • кислород.

Они выстраивают молекулы белков (основы жизни), углеводов, липидов и прочих веществ. Однако за нормальное функционирование организма отвечают так же и минеральные вещества. Химический состав клетки исчисляется десятками элементов из таблицы Менделеева, которые являются залогом успешной жизнедеятельности. Лишь около 12 из всех атомов не играют роли совсем либо она ничтожно мала и не изучена.

Особенно важны некоторые соли, которые должны поступать в организм с пищей каждый день в достаточном количестве, чтобы не развивались различные болезни. Для растений это, например, натриевая селитра, нитрат калия. Для человека и животных это соли кальция, поваренная соль как источник натрия и хлора и др..

Минеральные вещества клетки объединяются с водой в общую группу неорганических веществ, поэтому не сказать о ее значении нельзя. Какую роль она играет в организме живых существ? Огромную.

В начале статьи мы сравнивали клетку с биохимической фабрикой. Так вот, все ежесекундно происходящие превращения веществ осуществляются именно в водной среде.

Она – универсальный растворитель и среда для химических взаимодействий, процессов синтеза и распада.

Кроме того, вода входит в состав внутренней среды:

  • цитоплазмы;
  • клеточного сока у растений;
  • крови у животных и человека;
  • мочи;
  • слюны прочих биологических жидкостей.

Обезвоживание означает смерть для всех организмов без исключения. Вода – это среда жизни для огромного количества разнообразных представителей флоры и фауны. Поэтому переоценить значение этого неорганического вещества сложно, оно поистине безгранично велико.

Макроэлементы и их значение

Минеральные вещества клетки для ее нормальной работы имеют большое значение. В первую очередь это касается как раз макроэлементов. Роль каждого из них подробно изучена и давно установлена. Какие атомы составляют группу макроэлементов, мы уже выше перечисляли, поэтому повторяться не будем. Кратко обозначим роль основных из них.

  1. Кальций. Соли его необходимы для поставки в организм ионов Са2+. Сами ионы участвуют в процессах остановки и свертывания крови, обеспечивают экзоцитоз клетки, а также мышечные сокращения, в том числе сердечные. Нерастворимые соли – основа крепких костей и зубов животных и человека.
  2. Калий и натрий. Поддерживают состояние мембранного потенциала клетки, формируют натриево-калиевый насос работы сердца.
  3. Хлор – участвует в обеспечении электронейтральности клетки.
  4. Фосфор, сера, азот – являются составными частями многих органических соединений, а также принимают участие в работе мышц, составе костей.

Конечно, если рассматривать каждый элемент более подробно, то можно многое сказать и о его избытке в организме, и о недостатке. Ведь и то и другое вредно и приводит к заболеваниям различного рода.

Микроэлементы

Роль минеральных веществ в клетке, которые относятся к группе микроэлементов, также велика. Несмотря на то что их содержание очень мало в клетке, без них она не сможет долго нормально функционировать. Самыми главными из всех перечисленных выше атомов в этой категории являются такие как:

  • йод;
  • цинк;
  • медь;
  • селен;
  • фтор;
  • кобальт.

Нормальный уровень йода необходим для поддержания работы щитовидной железы и выработки гормонов. Фтор нужен организму для укрепления эмали зубов, а растениям – для сохранения эластичности и насыщенной окраски листьев.

Цинк и медь – это элементы, входящие в состав многих ферментов и витаминов. Они выступают важными участниками процессов синтеза и пластического обмена.

Селен – активный участник процессов регуляции, является необходимым для работы эндокринной системы элементом. Кобальт же имеет другое название – витамин В12, а все соединения данной группы крайне важны для иммунной системы.

Поэтому функции минеральных веществ в клетке, которые образованы микроэлементами нисколько не меньше, чем те, что выполняют макроструктуры. Поэтому важно потреблять и те и другие в достаточном количестве.

Ультрамикроэлементы

Минеральные вещества клетки, которые образованы ультрамикроэлементами, играют не столь значительную роль, как вышеупомянутые. Однако длительный их недостаток может приводить к развитию очень неприятных, а иногда и весьма опасных для здоровья последствий.

Например, селен относят и к данной группе тоже. Его длительная нехватка провоцирует развитие раковых опухолей. Поэтому он считается незаменимым. А вот золото и серебро – это металлы, которые оказывают отрицательное воздействие на бактерии, уничтожая их. Поэтому внутри клетки играют бактерицидную роль.

Однако в целом следует сказать, что функции ультрамикроэлементов еще не до конца раскрыты учеными, и значение их остается пока неясным.

Металлы и органические вещества

Многие металлы входят в состав органических молекул. Например, магний – кофермент хлорофилла, необходимого для фотосинтеза растений. Железо – часть молекулы гемоглобина, без которого невозможно осуществлять дыхание. Медь, цинк, марганец и прочие – части молекул ферментов, витаминов и гормонов.

Очевидно, что все эти соединения важны для организма. Отнести их полностью к минеральным нельзя, однако частично все же следует.

Минеральные вещества клетки и их значение: 5 класс, таблица

Чтобы обобщить то, что было нами сказано в течение статьи, составим общую таблицу, в которой отразим, какие бывают минеральные соединения и зачем они нужны. Использовать ее можно при объяснении данной темы школьникам, например, в пятом классе обучения.

Группа минеральных веществПримеры атомовЗначение для организма
Соединения, образованные макроэлементамиС, Н, Р, О, S, N, Ca, K, Mg, CL, Na, Fe и другиеУчаствуют во всех процессах синтеза и распада, обеспечивают нормальную работу всего организма
Вещества, образованные микроэлементамиCu, Zn, I, Mn, Co и прочиеОбеспечивают работу мышц, мембранных потенциалов, входят в состав витаминов, ферментов, гормонов
Ультрамикроэлементы в организмеСамый важный – селен, а также ртуть, золото, платина и прочиеУчаствуют в процессах регуляции

Таким образом, минеральные вещества клетки и их значение будут усвоены школьниками в курсе основной ступени обучения.

Последствия нехватки минеральных соединений

Когда мы говорим о том, что роль минеральных веществ в клетке важна, то должны привести примеры, доказывающие этот факт.

Перечислим некоторые заболевания, которые развиваются при недостатке или избытке каких-либо из обозначенных в ходе статьи соединений.

  1. Гипертония.
  2. Ишемия, сердечная недостаточность.
  3. Зоб и другие заболевания щитовидной железы (Базедова болезнь и прочие).
  4. Анемия.
  5. Неправильный рост и развитие.
  6. Раковые опухоли.
  7. Флюороз и кариес.
  8. Заболевания крови.
  9. Расстройство мышечной и нервной системы.
  10. Нарушение пищеварения.

Конечно, это далеко не полный список. Поэтому необходимо тщательно следить за тем, чтобы ежедневный рацион питания был правильным и сбалансированным.

Источник: https://FB.ru/article/188924/mineralnyie-veschestva-kletki-i-ih-znachenie-rol-mineralnyih-veschestv-v-kletke

Тема:

«Минеральные вещества и их роль в клетке».

Функции минеральных веществ

  • Минеральные вещества входят в состав всех клеток, тканей, костей;
  • Поддерживают кислотно-щелочное равновесие в организме
  • Оказывают большое влияние на обмен веществ. Гомеостаз
  • Регуляция иммунных процессов, осмотическое давление, дыхание тканей

Минеральные вещества

  • вода и различные соли, которые , находясь в растворенном состоянии, диссоциируют (распадаются) с образованием ионов :
  • катионов (положительно заряженных) и
  • анионов (отрицательно заряженных).

Макроэлементы и микроэлементы

  • К макроэлементам относят: натрий, калий, кальций, магний, хлор, кремний, серу, железо и др.
  • К микроэлементам относят:

йод, цинк, медь, фтор, бром, марганец

Кальций и фосфор

  • структурные элементы
  • слагают основную массу минерального вещества костей и зубов,

Натрий и хлор

  • являются основными ионами плазмы,
  • а калий , в больших количествах содержится внутри живых клеток

Неорганические ионы: катионы и анионы

Катионы  – калий, натрий, магний и кальций.

Анионы  – хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал . Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К + ) в клетке в 20–30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na + ) в десять раз ниже в клетке, чем в окружающей среде.

Градиент концентрации

К+

К+

Na+

  • Благодаря существованию  градиентов концентрации , осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Значение

  • Катионы влияют на вязкость и текучесть цитоплазмы.

Ионы калия(К ) уменьшают вязкость и увеличивают текучесть,

ионы кальция (Са 2+ ) обладают противоположным действием на цитоплазму клетки.

  • Анионы слабых кислот – гидрокарбонат анион (НСО 3 – ), гидрофосфат анион (НРО 4 2- ) – участвуют в поддержании кислотно-щелочного баланса клетки, то есть  pH среды . По своей реакции растворы могут быть  кислыминейтральными  и  основными .

рН среды и роль ионов в его поддержании

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого.

Буферным называют раствор, который поддерживает постоянное значение pH среды . Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью.

рН среды и роль ионов в его поддержании

  • Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора.
  • Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

рН среды и роль ионов в его поддержании

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин – это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления – смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются  буферные системы , которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

– карбонатная буферная система,

– фосфатная буферная система,

– буферная система гемоглобина,

– буферная система белков плазмы

Спасибо за внимание

Источник: https://videouroki.net/razrabotki/minieral-nyie-vieshchiestva-ikh-rol-v-klietkie.html

Минеральные вещества и их роль в клетке

Минеральные вещества и их роль в жизнедеятельности клетки. Минеральные вещества и их роль в клетке

1. Какие вещества называются минеральными?

Ответ. Минеральные вещества химические элементы, необходимые живому организму для обеспечения нормальной жизнедеятельности (кальций фосфор калий магний)

Магний – жизненно важный элемент, от его участия расслабляются мышцы.

Магнием тормозится возбуждение нервных окончаний, участвует во многих каталитических процессах, обладает способностью стимулировать перистальтику кишечника, тем самым способствует выводу шлаков (и холестерина в том же числе) и повышает выделение желчи. Магний оказывает сосудорасширяющее действие, улучшает кровоснабжение сердечной мышцы.

Калий – это минеральное вещество, которое необходимо для нормального функционирования клеток периферической и центральной нервной системы, для поддержания осмотического давления, для нормального функционирования всех мышц. Им способствуется выведение воды из организма, а следовательно, и вредных продуктов метаболизма.

Натрий. Поваренная соль необходима нашему организму. Является она составной частью крови и тканевой жидкости. В организм с пищей поступает необходимое её количество.

Фосфор – важнейший элемент, входящий в состав белков нуклеиновых кислот, костной ткани; влияет он на рост и восстановительные процессы в тканях. Фосфор нужен для костей, необходим и в мышцах. Аккумулятор энергии человека – аденозинтрифосфорная кислота (АТФ). Когда человек трудится, эта кислота распадается, отдавая заложенную в ней энергию.

Жизненно важный элемент – сера, значимость которого в первую очередь определяется тем, что входит он в состав белков в виде серосодержащих аминокислот (цистеина и метионина), а также – в состав некоторых гормонов и витаминов. Удовлетворяется потребность человеком в сере (около 1 г в день) при обычном суточном рационе.

Хлор – это тоже жизненно важный элемент, который участвует для образования желудочного сока, формирует плазму, активизирует ряд ферментов. хлора в пищевых продуктах колеблется в пределах 2-160 мг/%. Без добавления поваренной соли рацион содержал бы 1,6 г хлора.

Необходимое для кроветворения – железо, им обеспечивается транспортировка из легких кислорода к тканям. Входит железо в состав гемоглобина – красный пигмент крови.

Образуются красные кровяные тельца в костном мозге; поступают они в кровь и в ней циркулируют в течение 6 недель.

Распадаются потом на составные части, а железо, которое содержалось в них, поступает в селезенку и печень, откладываясь там «до востребования».

Цинк входит в состав крови и мышечной ткани. Это элемент необходим, значимостью которого определяется то что входит он в состав гормона поджелудочной железы инсулина, регулируется содержание сахара в крови.

Он также важен для полноценного заживлении ран участвует в регуляции артериального давления и способствует образованию простагландинов, обладающих противовоспалительным действием; помогает выводить из организма холестерин.

2. Какой процесс называется диссоциацией?

Ответ. Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в воде или при плавлении.

Диссоциация на ионы происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость

3. Что такое ионы?

Ответ. Ион — частица, в которой общее число протонов не эквивалентно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего общего числа электронов имеет отрицательный заряд и называется анионом.

В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвёздном пространстве).

Вопросы после §8

1. В каком виде минеральные вещества представлены в живых организмах?

Ответ. Большая часть минеральных веществ клетки находится в виде солей, диссоциированных на ионы, либо в твёрдом состоянии.

В цитоплазме практически любой клетки имеются кристаллические включения, состоящие, как правило, из слаборастворимых солей кальция и фосфора. Кроме них могут содержаться двуокись кремния и другие неорганические вещества.

Они используются для образования опорных структур клетки (например, минеральный скелет радиолярий) и организма – минерального вещества костной ткани (соли кальция и фосфора), раковин моллюсков (соли кальция), хитина (соли кальция) и др.

2. Какова роль неорганических ионов в клетке?

Ответ. Неорганические ионы, имеющие немаловажное значение для обеспечения процессов жизнедеятельности клетки, представлены катионами (К+, Na+, Ca2+, Mg2+, NH) и анионами (Cl-, HPO, Н2РО, НСО, NO, PO, СО) минеральных солей.

Концентрация катионов и анионов в клетке и в окружающей её среде различна.

В результате образуется разность потенциалов между содержимым клетки и окружающей её средой, обеспечивающая такие важные процессы, как раздражимость и передача возбуждения по нерву или мышце.

3. Какова роль ионов в буферных системах организма?

Ответ. Постоянство рН в клетках поддерживается благодаря буферным свойствам их содержимого. Буферным называют раствор, содержащий смесь какой-либо слабой кислоты и её растворимой соли.

Когда кислотность (концентрация ионов Н+) увеличивается, свободные анионы, источником которых является соль, легко соединяются со свободными ионами Н+и удаляют их из раствора. Когда кислотность снижается, высвобождаются дополнительные ионы Н+.

Так в буферном растворе поддерживается относительно постоянная концентрация ионов Н+. Некоторые органические соединения, в частности белки, также имеют буферные свойства.

Являясь компонентами буферных систем организма, ионы определяют их свойства – способность поддерживать рН на постоянном уровне (близко к нейтральной реакции), несмотря на то что в процессе обмена веществ непрерывно образуются кислые и щелочные продукты.

Так, фосфатная буферная система млекопитающих, состоящая из НРО42- и Н2РО4-, поддерживает рН внутриклеточной жидкости в пределах 6,9–7,4.

Главной буферной системой внеклеточной среды (плазмы крови) служит бикарбонатная система, состоящая из Н2СO3 и HCO4- и поддерживающая рН на уровне 7,4

4. Почему недостаток или отсутствие ионов некоторых металлов приводит к нарушению жизнедеятельности клеток?

Ответ. Ионы некоторых металлов (Mg, Ca, Fe, Zn, Cu, Mn, Mo, Br, Со) являются компонентами многих ферментов, гормонов и витаминов или активируют их. Например, ион Fe входит в состав гемоглобина крови, ион Zn – гормона инсулина. При их недостатке нарушаются важнейшие процессы жизнедеятельности клетки.

Источник: https://resheba.me/gdz/biologija/10-klass/kamenskij/8

Консультант Кузнецов
Добавить комментарий